期刊文献+
共找到23,416篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进实数编码遗传算法的神经网络超参数优化 被引量:2
1
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
下载PDF
基于改进松鼠搜索算法优化神经网络的数控机床进给系统热误差预测 被引量:1
2
作者 杨赫然 李帅 +2 位作者 孙兴伟 董祉序 刘寅 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期60-69,共10页
为探究数控机床进给系统中各因素对热误差的影响规律,建立精准的热误差预测模型。在进给速度为10 m/min、环境温度20℃的条件下进行进给系统热误差测量实验,获得进给系统关键点的温升及热误差。为提高预测精度,采用Tent混沌改进松鼠搜... 为探究数控机床进给系统中各因素对热误差的影响规律,建立精准的热误差预测模型。在进给速度为10 m/min、环境温度20℃的条件下进行进给系统热误差测量实验,获得进给系统关键点的温升及热误差。为提高预测精度,采用Tent混沌改进松鼠搜索算法,并利用改进的算法对神经网络进行优化,建立热误差预测模型。利用热误差测量实验获得的数据进行验证,结果表明改进前的神经网络预测误差为12.23%,改进后的模型预测误差为8.92%,精度有较大提升。利用预测模型针对不同进给速度下相同位置处热误差进行分析,结果表明,进给系统中关键测温点的温度和丝杠各点的热误差随着进给速度的增加而增加。因此提出的预测模型可实现进给系统热误差的准确预测,为误差补偿提供理论依据。 展开更多
关键词 进给系统 热误差 松鼠搜索算法 神经网络
下载PDF
基于径向基函数神经网络算法的高频转阀阀芯稳定性
3
作者 薛召 陈泽吉 +1 位作者 贾文昂 白继平 《液压与气动》 北大核心 2024年第9期98-107,共10页
针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLA... 针对伺服电机驱动高频转阀时受液动力矩变化影响造成高频输出精度下降的问题,以液压马达作为动力源,提出一种基于径向基函数神经网络算法的转阀阀芯转速控制策略。首先,搭建高频转阀阀芯转速控制系统的数学模型;其次根据数学模型在MATLAB/Simulink平台搭建仿真模型,对不同算法作用下阀芯转速控制特性进行仿真分析;最后建立高频转阀转速控制系统实验台,对不同算法作用下阀芯转速控制特性进行实验研究和理论验证。结果表明:与常规PID控制方法相比,基于径向基函数神经网络的高频转阀转速控制策略转速控制系统阶跃响应所需调整时间最少为0.16 s,超调量小;三角波与正弦波转速跟踪误差均值下降最大值分别为46.51%、53.69%;6 MPa、10 MPa下,转速稳态误差均值分别下降34.92%、38.26%。径向基函数神经网络算法有效提高了高频转阀阀芯转速控制精度。 展开更多
关键词 径向基函数神经网络算法 高频转阀 液压马达 转速控制
下载PDF
紫外光谱结合BP神经网络算法建立食用油掺伪煎炸油的快速鉴定模型
4
作者 陈林林 吴松遥 +5 位作者 王玲 张铭 李昕彤 张海鹏 郝熙 李伟 《中国粮油学报》 CAS CSCD 北大核心 2024年第6期206-214,共9页
为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后... 为建立一种快速食用油掺伪煎炸油检测方法,采用紫外光谱法鉴别其掺伪,本研究选取大豆油、玉米油和葵花籽油为代表分别煎炸,在纯油中掺入相应煎炸时间0~6 h及掺假梯度0%~90%的煎炸油制备掺伪油样,进行紫外光谱及二阶导数预处理,经处理后的光谱特征峰与BP(Backpropagation)神经网络算法结合建立食用油掺伪煎炸油模型,对掺入煎炸油类别、煎炸时间和煎炸油含量进行鉴别分析。结果表明二阶导数预处理后掺伪煎炸油的光谱特征峰中大豆油为446、462 nm、玉米油为268、274 nm、葵花籽油为280、288 nm,根据其特征峰位与峰值建立Levenberg–Marquardt算法(LMA)、动量梯度下降法(MGD)及弹性梯度下降法(EGD)掺伪模型识别率分别为98.15%、91.67%、95.52%。 展开更多
关键词 食用油 煎炸油 紫外光谱 掺伪 BP神经网络算法
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
5
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(LSTM)神经网络 鲁棒性
下载PDF
基于卷积神经网络的纸张表面缺陷智能检测算法研究
6
作者 王娟 王卫斌 康晓梅 《造纸科学与技术》 2024年第3期115-118,共4页
针对纸张缺陷检测领域中如何有效提升缺陷特征提取能力、提高检测精度以及减少小目标缺陷漏检的难题,创新性地提出了一种基于改进Faster R-CNN算法的检测方法。该方法通过采用ResNet-50代替传统的VGG16作为特征提取的骨干网络,有效地增... 针对纸张缺陷检测领域中如何有效提升缺陷特征提取能力、提高检测精度以及减少小目标缺陷漏检的难题,创新性地提出了一种基于改进Faster R-CNN算法的检测方法。该方法通过采用ResNet-50代替传统的VGG16作为特征提取的骨干网络,有效地增强了对纸张缺陷特征的捕获能力;进一步引入CBAM模块,实现了对空间及通道注意力的双重优化,显著提升了缺陷检测的准确度。此外,通过将ROI-Pooling技术升级为ROI-Align技术,本方法进一步增强了模型对纸张缺陷检测的泛化性能。经验证,该改进算法在常见纸张缺陷检测方面的平均精度达到了98%,不仅显著提高了检测精度,还有效减少了小目标缺陷的漏检,降低了错误检测率,为纸张缺陷检测技术的发展提供了新的思路和方法。 展开更多
关键词 卷积神经网络 纸张 缺陷 Faster R-CNN算法 注意力机制
下载PDF
基于改进海鸥优化算法的BP神经网络及其应用
7
作者 闫向彤 张健 +2 位作者 乔煜哲 董鹏辉 熊友锟 《传感器与微系统》 CSCD 北大核心 2024年第7期165-168,共4页
针对传统反向传播(BP)神经网络在预测时随机产生的初始权值、阈值影响准确性的问题,提出一种改进的海鸥优化算法(ISOA)对BP神经网络的初始阈值、权值进行寻优。首先,为提高海鸥优化算法(SOA)的收敛精度和跳出局部最优的能力,使用Sine混... 针对传统反向传播(BP)神经网络在预测时随机产生的初始权值、阈值影响准确性的问题,提出一种改进的海鸥优化算法(ISOA)对BP神经网络的初始阈值、权值进行寻优。首先,为提高海鸥优化算法(SOA)的收敛精度和跳出局部最优的能力,使用Sine混沌映射初始化种群,引入非线性参数A,在海鸥攻击时引入乘除策略进行扰动,同时在攻击阶段后引入反向学习策略。然后,使用ISOA优化BP神经网络初始权值、阈值,解决对初值敏感和易陷入局部最优的问题。最后,在冻结裂隙砂岩动态冲击试验中进行峰值应力预测,结果表明:对比原始BP、粒子群优化(PSO)-BP和SOA-BP,ISOA优化后的BP神经网络对峰值应力预测精度更高。 展开更多
关键词 反向传播神经网络 海鸥优化算法 混沌映射 乘除策略 反向个体
下载PDF
小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别
8
作者 韩东颖 田伟 +1 位作者 黄岩 朱国庆 《机械科学与技术》 CSCD 北大核心 2024年第1期39-44,共6页
井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构... 井架钢结构损伤影响其承载安全性,为快速、准确对损伤位置进行识别,提出小波包与遗传算法优化BP神经网络相结合的井架钢结构损伤识别方法。首先利用小波包处理非平稳振动信号的优良性能对原始振动信号进行特征提取,获得表征井架钢结构损伤的信息;再通过特征参数建立数据集训练并测试井架钢结构损伤识别模型,该模型结合遗传算法自身特点改善了传统BP神经网络的不足。本文识别方法不需要损伤前的数据特征进行对比,便可对损伤位置进行确定。经过对石油井架钢结构模型实验验证:该方法对井架钢结构损伤识别准确率超过90%,相对于BP网络识别准确率以及识别速度均有所提高。 展开更多
关键词 井架钢结构 损伤 小波包 遗传算法 优化的BP神经网络
下载PDF
基于遗传算法和BP神经网络的矿区土壤重金属含量空间分布预测
9
作者 赵萍 阮旭东 +4 位作者 刘亚风 赵思逸 孙雨 常杰 周俊 《土壤》 CAS CSCD 北大核心 2024年第4期889-896,共8页
本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As... 本研究提出了一种基于遗传算法(Genetic algorithm,GA)和BP神经网络(Back propagation neural network,BPNN)的复合模型——GABP模型,以安徽省池州市某矿区及其周边为研究区,预测了土壤中p H和7种重金属元素(Cd、Pb、Cr、Cu、Ni、Hg、As)含量的空间分布,并与BPNN和反比距离权重法(Inverse distance weighting,IDW)进行了比较。研究结果表明:受采矿活动影响,研究区土壤p H和重金属含量呈显著的空间分异性;GABP复合模型的数据扩增能够有效弥补BPNN对样本数量的依赖,同时结合了地理位置和高程属性,精度评价结果显示GABP模型的平均R^(2)、r、RMSE、MAE分别是IDW和BPNN的3.03倍、2.56倍,2.93倍、2.39倍,0.85倍、0.61倍,0.79倍、0.62倍,预测精度更高。模型解决了传统空间插值方法结果中可能出现负值和边界无法插值的问题,为土壤重金属含量空间分布预测提供了一种新方法。 展开更多
关键词 遗传算法 BP神经网络 GABP模型 空间分布预测 重金属含量
下载PDF
基于改进鲸鱼算法优化神经网络的GPS高程拟合方法
10
作者 钱建国 徐志文 +3 位作者 赵玉国 郭洁 王志强 赵金来 《大地测量与地球动力学》 CSCD 北大核心 2024年第2期122-127,共6页
采取混沌映射和自适应惯性权重结合的策略对标准鲸鱼算法进行改进,从而提高算法的全局寻优能力和收敛速度,并针对BP神经网络的劣势,利用改进鲸鱼算法对BP神经网络进行优化处理。在此基础上建立改进鲸鱼算法优化BP神经网络的GPS高程异常... 采取混沌映射和自适应惯性权重结合的策略对标准鲸鱼算法进行改进,从而提高算法的全局寻优能力和收敛速度,并针对BP神经网络的劣势,利用改进鲸鱼算法对BP神经网络进行优化处理。在此基础上建立改进鲸鱼算法优化BP神经网络的GPS高程异常拟合预测模型,并通过两组不同地形特征工程中的GPS数据对模型进行验证。结果表明,利用改进鲸鱼算法优化的BP模型进行GPS高程拟合时可取得更高的精度和稳定性。 展开更多
关键词 改进鲸鱼算法 混沌映射 自适应惯性权重 高程拟合 BP神经网络
下载PDF
基于BP神经网络算法的异步电机故障诊断系统研究
11
作者 孙吴松 《荆楚理工学院学报》 2024年第2期1-10,共10页
为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子... 为了确保电机安全可靠地运行,研究了BP神经网络算法对异步电动机进行故障诊断。通过MATLAB平台,分别使用附加动量因子和自适应学习率两种梯度下降法进行网络训练,搭建故障诊断BP网络模型。以MSE值为指标优化最佳隐含层节点数、动量因子与学习率,并通过遗传算法来优化BP网络的初始权值,对故障测试样本进行仿真测试。结果表明,GA-BP网络模型比MF-BP和AG-BP的MSE值更低,仅为0.009163,优化后的诊断预测结果与目标值几乎没有差别。基于遗传算法改进的故障诊断系统模型能够满足异步电动机故障诊断的应用需求。 展开更多
关键词 故障诊断 MATLAB BP神经网络 遗传算法 网络优化
下载PDF
BP神经网络算法在求解数学建模最优化问题中的应用
12
作者 吴小兰 张益敏 张奕河 《计算机应用文摘》 2024年第6期72-74,79,共4页
为了解决目标函数较为复杂、无法用初等函数表示的最优化问题,文章采用了结合BP神经网络与遗传算法的方法进行求解。求解过程分为两个模块:第一,利用BP神经网络算法确定目标函数的解析式;第二,利用遗传算法寻找目标函数的最优解。为验... 为了解决目标函数较为复杂、无法用初等函数表示的最优化问题,文章采用了结合BP神经网络与遗传算法的方法进行求解。求解过程分为两个模块:第一,利用BP神经网络算法确定目标函数的解析式;第二,利用遗传算法寻找目标函数的最优解。为验证该方法的可行性,文章对单变量和多变量两种情况进行了验证。 展开更多
关键词 BP神经网络 遗传算法 最优化
下载PDF
基于层级循环神经网络的多分区医疗影像智能推荐算法
13
作者 李晓宇 《绥化学院学报》 2024年第9期156-160,共5页
针对传统的医疗影像智能推荐算法未进行数据预处理和特征向量提取,导致推荐准确度低、加速比小的问题,提出基于层级循环神经网络的多分区医疗影像智能推荐算法。首先,计算得到Gini增益,获取多分区医疗影像;其次,采用等方性处理方法对医... 针对传统的医疗影像智能推荐算法未进行数据预处理和特征向量提取,导致推荐准确度低、加速比小的问题,提出基于层级循环神经网络的多分区医疗影像智能推荐算法。首先,计算得到Gini增益,获取多分区医疗影像;其次,采用等方性处理方法对医疗影像进行插值,采用高斯滤波方法滤除医疗影像中噪声,基于此去除干扰信息;最后,将去除干扰信息后医疗影像输入到层级循环神经网络模型中,训练模型中的个数、深度、内部节点的数量,确定梯度向量,获取推荐结果。 展开更多
关键词 层级循环神经网络 多分区 医疗影像 智能推荐算法
下载PDF
基于卷积神经网络算法的稀土酸度自动滴定技术研究
14
作者 曹靖 张帅 陈吉文 《实验与分析》 2024年第2期1-5,共5页
如今稀土产业发展迅速,市场需求越来越大,应用的范围也越来越广,需建立一个简便易操作且适用于测定各类稀土酸度的方法。目前传统稀土酸度检测方法存在效率低、准确度低、滴定终点差异大等问题,难以满足实时在线检测的需要。本文提出一... 如今稀土产业发展迅速,市场需求越来越大,应用的范围也越来越广,需建立一个简便易操作且适用于测定各类稀土酸度的方法。目前传统稀土酸度检测方法存在效率低、准确度低、滴定终点差异大等问题,难以满足实时在线检测的需要。本文提出一种基于卷积神经网络算法的稀土酸度在线分析仪,可以助力在线检测的顺利进行。卷积神经网络算法是通过高清工业摄像头记录样品在滴定过程中的溶液颜色的变化,对溶液进行实时图像特征提取和学习,从而有效、准确地实现化学反应过程中溶液颜色的自动识别,配合步进电机和注射泵等部件实现自动滴定过程。图像识别本质上是对图像信息进行特征提取,而卷积神经网络算法有着传统识别方法不具备的优点,比如能够自行训练、识别速度更快、所需特征更少等。本仪器将自动滴定与卷积神经网络相结合,实现了滴定流程的自动化取样和前处理、滴定过程、终点判定等过程的一体化,且仪器能够同时进行五个样品的滴定试验,很大程度上提高了滴定效率和精度。 展开更多
关键词 卷积神经网络算法 自动滴定 稀土酸度 自动取样
下载PDF
遗传算法优化BP神经网络在水质评价中的应用
15
作者 宋洁 冯青 《甘肃科技》 2024年第1期33-41,共9页
通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值... 通过对常规BP神经网络和遗传算法深入研究后,提出将二者结合起来,取长补短,并采用黄金分割算法确定神经网络模型隐含层节点数,借助MATLAB软件建立了遗传算法优化后的BP神经网络水质评价模型,解决了初始权值、阈值确定难,易陷入局部极值以及网络收敛慢等问题,同时结合2021年黄河上游部分断面地表水环境质量评价进行了实例仿真实验,验证了该模型的可行性和准确性。遗传算法优化后的BP神经网络不仅能从全局考虑污染因子对评价结果的影响,而且解决了常规BP神经网络易陷入局部极值的问题,提高了网络的识别精度,评价结果更准确,更符合实际水体情况,在一定程度上改善了传统评价方法的片面性和主观性,对现有的水环境质量评价方法的改进起到了积极作用。 展开更多
关键词 BP神经网络 遗传算法 黄金分割算法 水环境质量评价 MATLAB
下载PDF
基于反向传播神经网络和遗传算法的新鲜Halloumi奶酪生产工艺优化 被引量:1
16
作者 孙嘉 郑远荣 +3 位作者 刘振民 张娟 徐杏敏 贾向飞 《食品与发酵工业》 CSCD 北大核心 2024年第1期133-140,I0004-I0006,共11页
为提升Halloumi奶酪品质,采用反向传播神经网络和遗传算法优化Halloumi奶酪生产过程的多工艺参数。选取CaCl_(2)添加量、热烫温度和压榨压强为优化变量,以成品奶酪得率和感官评分为优化目标,分别建立了2个神经网络模型,模型精度分别达到... 为提升Halloumi奶酪品质,采用反向传播神经网络和遗传算法优化Halloumi奶酪生产过程的多工艺参数。选取CaCl_(2)添加量、热烫温度和压榨压强为优化变量,以成品奶酪得率和感官评分为优化目标,分别建立了2个神经网络模型,模型精度分别达到了98.936%和98.255%。之后,通过遗传算法进行寻优,结果表明,在得率≥10%以及感官评分≥85的前提下,以奶酪得率为目标的最优生产工艺条件:CaCl_(2)添加量0.0144%、热烫温度83.5℃、压榨压强5.12 kPa,该条件下最高得率为12.01%。以感官品质为目标的最优生产工艺条件:CaCl_(2)添加量0.0171%、热烫温度83.7℃、压榨压强10.38 kPa,该条件下最高感官评分为94.5。该方法能够有效实现Halloumi奶酪生产工艺的快速优化,为促进Halloumi奶酪工业化提供理论基础。 展开更多
关键词 新鲜奶酪 Halloumi奶酪 神经网络 遗传算法 工艺优化
下载PDF
高校大学生心理健康评价指标体系与仿真技术研究——基于神经网络优化算法
17
作者 戴钰 《科教文汇》 2024年第18期173-179,共7页
本文以促进大学生心理良性发展为导向,以大学生心理健康问题的诱因为切入点,确定大学生心理健康评价指标体系。从分类问题和回归问题角度出发,在分类问题中使用有监督分类学习器对大学生心理健康评价体系进行建模,在回归问题中使用神经... 本文以促进大学生心理良性发展为导向,以大学生心理健康问题的诱因为切入点,确定大学生心理健康评价指标体系。从分类问题和回归问题角度出发,在分类问题中使用有监督分类学习器对大学生心理健康评价体系进行建模,在回归问题中使用神经网络类学习器进行分析。使用SOM聚类算法验证大学生心理健康评价指标体系的稳健性,并基于神经网络学习器进行模型训练,针对最优权重以及阈值的选择问题使用遗传算法进行优化。 展开更多
关键词 大学生心理健康 神经网络优化算法 仿真模拟
下载PDF
基于递归神经网络算法的电子物流配送系统配送路径优化
18
作者 郭艳平 《电脑编程技巧与维护》 2024年第4期25-27,43,共4页
传统电子物流配送系统无法有效优化配送路径,需要花费大量的时间进行路径搜索,从而导致分配成本的增加和效率的降低。因此,提出了递归神经网络算法(RNNs)的物流分布路径优化模型,并将递归模糊神经网络算、与布谷鸟搜索算法(CSA)与群体... 传统电子物流配送系统无法有效优化配送路径,需要花费大量的时间进行路径搜索,从而导致分配成本的增加和效率的降低。因此,提出了递归神经网络算法(RNNs)的物流分布路径优化模型,并将递归模糊神经网络算、与布谷鸟搜索算法(CSA)与群体智能算法(ACO)进行电子商务物流分布路径比较。实验结果表明,递归模糊神经网络算法可以实现电子商务物流分布路径的优化,与群体智能算法和布谷鸟搜索算法相比,递归神经网络算法的最优路径长度分别减少3.7 km和3.5 km,并且在迭代200次数的条件下,递归神经网络算法可以获得最短配送路径。 展开更多
关键词 递归神经网络算法 电子物流配送系统 配送路径 路径长度
下载PDF
蜣螂算法优化概率神经网络的变压器故障诊断 被引量:1
19
作者 宗琳 周晓华 +3 位作者 罗文广 刘胜永 张银 吴雪颖 《智慧电力》 北大核心 2024年第5期98-104,共7页
针对仅靠人工经验选取平滑因子的概率神经网络(PNN)变压器故障诊断模型存在诊断正确率偏低的问题,提出1种采用蜣螂算法(DBO)优化PNN平滑因子的变压器故障诊断模型。选取测试函数对DBO算法进行寻优测试,并与粒子群算法(PSO)、人工蜂群算... 针对仅靠人工经验选取平滑因子的概率神经网络(PNN)变压器故障诊断模型存在诊断正确率偏低的问题,提出1种采用蜣螂算法(DBO)优化PNN平滑因子的变压器故障诊断模型。选取测试函数对DBO算法进行寻优测试,并与粒子群算法(PSO)、人工蜂群算法(ABC)、灰狼优化算法(GWO)对比,DBO在寻优精度、收敛速度和避免局部最优方面更具优势;采用DBO对PNN平滑因子寻优以建立DBO-PNN诊断模型,并与PSO-PNN、ABC-PNN和GWO-PNN模型进行诊断对比,结果表明DBO-PNN模型的诊断效果更好,正确率达96%。 展开更多
关键词 变压器故障诊断 蜣螂算法 概率神经网络 油中溶解气体分析
下载PDF
基于自编码器与时域卷积神经网络算法的配电网线损分析
20
作者 刘超 侯人杰 《软件导刊》 2024年第9期63-69,共7页
复杂的配电网环境中存在线损计算精确性、实时性不足的问题,因此提出基于循环神经网络自编码器改进的TCN-BiGRU配电网线损预测方法。选用擅长处理时间序列的TCN神经网络模型作为主干特征提取网络,在TCN中融入BiGRU单元以有效解决梯度消... 复杂的配电网环境中存在线损计算精确性、实时性不足的问题,因此提出基于循环神经网络自编码器改进的TCN-BiGRU配电网线损预测方法。选用擅长处理时间序列的TCN神经网络模型作为主干特征提取网络,在TCN中融入BiGRU单元以有效解决梯度消失问题。在此基础上,结合循环神经网络自编码器对线损异常值进行无监督分类并标记,通过softmax损失函数预测线损率异常原因,并制定相应降损措施,同时利用改进后的TCN-BiGRU算法对线损进行预测及成因分析。实验结果表明,与传统的配电网线损预测方法相比,该线损预测方法的均方根误差相较于传统的EMD-LSTM与PSO-CNN算法分别降低了0.03699和0.00402,在线损成因分析方面的准确率相较于ResNet50与DBN-DNN算法分别提高了1.500%和5.841%,为分布式电源接入后配电网节能降损、实现电网双碳目标提供了科学的参考依据。 展开更多
关键词 循环神经网络自编码器 TCN-BiGRU线损预测算法 智能电网 线损异常成因分析 台区线损预测
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部