期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于GARBF神经网络的耕地土壤有效磷空间变异分析 被引量:22
1
作者 徐剑波 宋立生 +2 位作者 夏振 张桥 胡月明 《农业工程学报》 EI CAS CSCD 北大核心 2012年第16期158-165,I0006,共9页
为了调整耕地管理措施、合理施用磷肥、减少磷素流失、降低水体非点源污染,该研究以高州市为例,在全市各区镇共采集了664个耕作层(0~20cm)土样,利用遗传算法优化的径向基函数(radial basis function network optimized by geneti calgo... 为了调整耕地管理措施、合理施用磷肥、减少磷素流失、降低水体非点源污染,该研究以高州市为例,在全市各区镇共采集了664个耕作层(0~20cm)土样,利用遗传算法优化的径向基函数(radial basis function network optimized by geneti calgorithm,GARBF)神经网络和普通克里金法(Ordinary Kriging)等方法,分析了县域耕地土壤有效磷在不同采样尺度下的空间变异特征及其空间分布格局与成因。结果表明,高州市耕地表层土壤有效磷存在半方差结构,半方差函数曲线与指数和球状模型曲线拟合较好;5种采样尺度下(训练样点数分别为100、200、300、400和500)耕地表层土壤有效磷均表现出弱的结构空间相关,在较大范围内空间自相关性较差。GARBF神经网络空间插值能力在整体上要有优于基于邻近点RBF神经网络和普通克里金法。300样本下GARBF神经网络空间插值结果表明,高州市耕地表层土壤有效磷的盈余现象比较严重,并且盈余有效磷的流失对该地区水环境会产生严重的威胁。该研究结果可以为土壤属性空间估测、合理施肥以及降低水体非点源污染提供理论依据和技术支持。 展开更多
关键词 土壤 神经网络 garbf神经网络
下载PDF
基于GARBF神经网络的土壤有效锌空间插值方法研究 被引量:26
2
作者 董敏 王昌全 +3 位作者 李冰 唐敦义 杨娟 宋薇平 《土壤学报》 CAS CSCD 北大核心 2010年第1期42-50,共9页
以土壤有效锌为研究对象,构建遗传径向基函数(GARBF)神经网络对该元素属性值进行空间插值,以训练样本集的测定值与预测值之间的决定系数、逼近误差及检验样本的插值误差为评判标准,比较GARBF神经网络、径向基函数(RBF)神经网络、普通克... 以土壤有效锌为研究对象,构建遗传径向基函数(GARBF)神经网络对该元素属性值进行空间插值,以训练样本集的测定值与预测值之间的决定系数、逼近误差及检验样本的插值误差为评判标准,比较GARBF神经网络、径向基函数(RBF)神经网络、普通克里格(Ordinary Kriging)的拟合能力和空间插值能力。结果表明:同一区域两种抽样方案(a、b)下三种插值方法对训练样本的拟合能力为GARBF>RBF>Or-dinary Kriging。以平均绝对误差和误差均方根作为插值精度的评价指标,GARBF与RBF神经网络相比,训练样本的逼近误差分别降低0.22~0.25(a方案)和0.10~0.11(b方案),检验样本的插值误差分别降低0.13~0.11(a方案)和0.02~0.13(b方案);GARBF神经网络与Ordinary Kriging相比,训练样本的逼近误差分别降低1.12~1.40(a方案)和1.45~1.88(b方案),检验样本的插值误差分别降低0.20~0.24(a方案)和0.14~0.32(b方案),GARBF神经网络的误差最小,插值精度最高。从GARBF神经网络的插值图可以看出,遗传算法避免了神经网络容易陷入局部最优点,扩大了对土壤中相关空间信息的搜索范围,在一定程度上避免了类似克里格插值的"平滑效应"。 展开更多
关键词 garbf神经网络 RBF神经网络 普通克里格 空间插值
下载PDF
乙炔羰基化合成丙烯酸甲酯催化性能的人工神经网络模拟 被引量:1
3
作者 王淑芬 王卫 +2 位作者 曹先航 秦金凤 牛倩 《石河子大学学报(自然科学版)》 CAS 2013年第2期230-235,共6页
通过神经网络技术可找出催化工艺与催化性能之间的关联性,从而对催化性能进行预测,达到提高研究效率的目的。本文针对训练样本中奇异样本对神经网络模型预测能力和泛化能力的影响,将遗传算法思想引入神经网络,构建神经网络模型动态训练... 通过神经网络技术可找出催化工艺与催化性能之间的关联性,从而对催化性能进行预测,达到提高研究效率的目的。本文针对训练样本中奇异样本对神经网络模型预测能力和泛化能力的影响,将遗传算法思想引入神经网络,构建神经网络模型动态训练集,建立了遗传算法-神经网络模型(GARBF);利用GARBF模型对乙炔羰基化合成丙烯酸甲酯催化性能进行预测模拟。结果表明:与RBF相比,GARBF的预测精度明显提高,对于六组测试集,平均相对误差从2.94%降低到1.18%,体现了更强的泛化能力。 展开更多
关键词 神经网络 RBF garbf 预测 催化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部