In this article a new approach for checking the adequacy of GARCH-type models in time series was proposed. The resulted tests involve weight functions, which provide them with the flexibility in choosing scores to enh...In this article a new approach for checking the adequacy of GARCH-type models in time series was proposed. The resulted tests involve weight functions, which provide them with the flexibility in choosing scores to enhance power performance. The choice of weight functions and the power properties of the tests are studied. For a large number of alternatives, asymptotically distribution-free maximin test is constructed. The tests are asymptotically chi-squared under the null hypothesis and easy to implement. Simulation results indicate that the tests perform well.展开更多
This paper considers adaptive point-wise estimations of density functions in GARCH-type model under the local Holder condition by wavelet methods.A point-wise lower bound estimation of that model is first investigated...This paper considers adaptive point-wise estimations of density functions in GARCH-type model under the local Holder condition by wavelet methods.A point-wise lower bound estimation of that model is first investigated;then we provide a linear wavelet estimate to obtain the optimal convergence rate,which means that the convergence rate coincides with the lower bound.The non-linear wavelet estimator is introduced for adaptivity,although it is nearly-optimal.However,the non-linear wavelet one depends on an upper bound of the smoothness index of unknown functions,we finally discuss a data driven version without any assumptions on the estimated functions.展开更多
To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices...To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices were obtained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total of 2713 observations were explored and were divided into two portions. The first which ranged from January 3, 2006 to November 24, 2016, comprising 2690 observations, was used for model formulation. The second portion which ranged from November 25, 2016 to December 30, 2016, consisting of 23 observations, was used for out-of-sample forecasting performance evaluation. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were applied on the returns series with respect to normal and student-t distributions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum predictive errors throughout-of-sample approach outperformed ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model chosen through in-sample approach. Therefore, it could be deduced that out-of-sample model selection approach was suitable for selecting models with improved forecasting accuracies and performances.展开更多
基金supported by a grant from the Research Grants Council of Hong Kong.Jianhong Wu was also supported by a grant from Humanities & Social Sciences in Chinese University (07JJD790154)the Youth Talent Foundation of Zhejiang GongShang University (Q09-12)
文摘In this article a new approach for checking the adequacy of GARCH-type models in time series was proposed. The resulted tests involve weight functions, which provide them with the flexibility in choosing scores to enhance power performance. The choice of weight functions and the power properties of the tests are studied. For a large number of alternatives, asymptotically distribution-free maximin test is constructed. The tests are asymptotically chi-squared under the null hypothesis and easy to implement. Simulation results indicate that the tests perform well.
基金supported by the National Natural Science Foundation of China(No.11901019)the Science and Technology Program of Beijing Municipal Commission of Education(No.KM202010005025).
文摘This paper considers adaptive point-wise estimations of density functions in GARCH-type model under the local Holder condition by wavelet methods.A point-wise lower bound estimation of that model is first investigated;then we provide a linear wavelet estimate to obtain the optimal convergence rate,which means that the convergence rate coincides with the lower bound.The non-linear wavelet estimator is introduced for adaptivity,although it is nearly-optimal.However,the non-linear wavelet one depends on an upper bound of the smoothness index of unknown functions,we finally discuss a data driven version without any assumptions on the estimated functions.
文摘To overcome the weaknesses of in-sample model selection, this study adopted out-of-sample model selection approach for selecting models with improved forecasting accuracies and performances. Daily closing share prices were obtained from Diamond Bank and Fidelity Bank as listed in the Nigerian Stock Exchange spanning from January 3, 2006 to December 30, 2016. Thus, a total of 2713 observations were explored and were divided into two portions. The first which ranged from January 3, 2006 to November 24, 2016, comprising 2690 observations, was used for model formulation. The second portion which ranged from November 25, 2016 to December 30, 2016, consisting of 23 observations, was used for out-of-sample forecasting performance evaluation. Combined linear (ARIMA) and Nonlinear (GARCH-type) models were applied on the returns series with respect to normal and student-t distributions. The findings revealed that ARIMA (2,1,1)-EGARCH (1,1)-norm and ARIMA (1,1,0)-EGARCH (1,1)-norm models selected based on minimum predictive errors throughout-of-sample approach outperformed ARIMA (2,1,1)-GARCH (2,0)-std and ARIMA (1,1,0)-EGARCH (1,1)-std model chosen through in-sample approach. Therefore, it could be deduced that out-of-sample model selection approach was suitable for selecting models with improved forecasting accuracies and performances.