In this paper, the problem how to reduce the GB effect in SC filters is discussed. A new generalbiquadratic SC structure in which the GB effect is reduced is developed. The structure is stray-insensitiveand has very l...In this paper, the problem how to reduce the GB effect in SC filters is discussed. A new generalbiquadratic SC structure in which the GB effect is reduced is developed. The structure is stray-insensitiveand has very low W<sub>0</sub> and Q sensitivities. Using the low-pass SC filter for an example, method of reducingthe GB effect has been shown in detail.展开更多
在实际勘探中,浅部三维电性不均匀体的存在会导致大地电磁响应发生畸变,使阻抗张量偏离真实区域阻抗,影响后续反演和解释工作。本文主要利用1D(One-dimensional)区域构造中静态因子的统计学性质对多测点多频点畸变校正方法进行了改进。...在实际勘探中,浅部三维电性不均匀体的存在会导致大地电磁响应发生畸变,使阻抗张量偏离真实区域阻抗,影响后续反演和解释工作。本文主要利用1D(One-dimensional)区域构造中静态因子的统计学性质对多测点多频点畸变校正方法进行了改进。首先通过粒子群全局优化算法得到GB(Groom-Bailey,GB)分解参数中确定参数的全局最优解空间,将其作为高斯牛顿法的初值来进行局部优化,然后通过ssq(the Sum of the Squared Elements,SSQ)旋转不变量的统计特性得到不确定参数,最后利用正演模型验证了该算法的有效性。结果表明:该方法结合了粒子群算法和高斯牛顿法,避免结果陷入局部最优,通过正演模型发现不确定参数随测点位置呈“正态分布”,在异常体中心位置取最大,并且不确定参数可以指示静态效应的影响频段。同时静态校正后视电阻率和相位曲线与未受畸变影响的数据具有较高的重合度,说明该方法很好地消除了1D区域构造中多个浅部异常体的影响,恢复了原始区域阻抗信息。展开更多
文摘In this paper, the problem how to reduce the GB effect in SC filters is discussed. A new generalbiquadratic SC structure in which the GB effect is reduced is developed. The structure is stray-insensitiveand has very low W<sub>0</sub> and Q sensitivities. Using the low-pass SC filter for an example, method of reducingthe GB effect has been shown in detail.
文摘在实际勘探中,浅部三维电性不均匀体的存在会导致大地电磁响应发生畸变,使阻抗张量偏离真实区域阻抗,影响后续反演和解释工作。本文主要利用1D(One-dimensional)区域构造中静态因子的统计学性质对多测点多频点畸变校正方法进行了改进。首先通过粒子群全局优化算法得到GB(Groom-Bailey,GB)分解参数中确定参数的全局最优解空间,将其作为高斯牛顿法的初值来进行局部优化,然后通过ssq(the Sum of the Squared Elements,SSQ)旋转不变量的统计特性得到不确定参数,最后利用正演模型验证了该算法的有效性。结果表明:该方法结合了粒子群算法和高斯牛顿法,避免结果陷入局部最优,通过正演模型发现不确定参数随测点位置呈“正态分布”,在异常体中心位置取最大,并且不确定参数可以指示静态效应的影响频段。同时静态校正后视电阻率和相位曲线与未受畸变影响的数据具有较高的重合度,说明该方法很好地消除了1D区域构造中多个浅部异常体的影响,恢复了原始区域阻抗信息。