研究GBBM方程ut-aΔut-bΔu+ F(u)+γu=h(x),其中F(u)=(F1(u),…,Fn(u)), F / xiFi,Fi(0)=0,Fi是R1上二阶导数连续的函数,fi(s)=d/dsFi(s),fi满足fi(0)=0,|fi(s)|<c(1=∑ni=1+|s|m),i=1,…,n,其中当n 2时,0 m<∞;当n 3时,0 m ...研究GBBM方程ut-aΔut-bΔu+ F(u)+γu=h(x),其中F(u)=(F1(u),…,Fn(u)), F / xiFi,Fi(0)=0,Fi是R1上二阶导数连续的函数,fi(s)=d/dsFi(s),fi满足fi(0)=0,|fi(s)|<c(1=∑ni=1+|s|m),i=1,…,n,其中当n 2时,0 m<∞;当n 3时,0 m 2/(n-2).在空间Rn上整体解的存在唯一性用Galerkin逼近方法和作极限的方法获得.展开更多
The following initial-boundary value problem for the systems with multidimensional inhomogeneous generalized Benjamin-Bona-Mahony ( GBBM ) equations is reviewed. The existence of global attractors of this problem was ...The following initial-boundary value problem for the systems with multidimensional inhomogeneous generalized Benjamin-Bona-Mahony ( GBBM ) equations is reviewed. The existence of global attractors of this problem was proved by means of a uniform priori estimate for time.展开更多
文摘研究GBBM方程ut-aΔut-bΔu+ F(u)+γu=h(x),其中F(u)=(F1(u),…,Fn(u)), F / xiFi,Fi(0)=0,Fi是R1上二阶导数连续的函数,fi(s)=d/dsFi(s),fi满足fi(0)=0,|fi(s)|<c(1=∑ni=1+|s|m),i=1,…,n,其中当n 2时,0 m<∞;当n 3时,0 m 2/(n-2).在空间Rn上整体解的存在唯一性用Galerkin逼近方法和作极限的方法获得.
基金Project supported by the National Natural Science Foundation of China (No. 10471050)the Natural Science Foundation of Guangdong Province (No.031495)
文摘The following initial-boundary value problem for the systems with multidimensional inhomogeneous generalized Benjamin-Bona-Mahony ( GBBM ) equations is reviewed. The existence of global attractors of this problem was proved by means of a uniform priori estimate for time.