Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However...Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.展开更多
BACKGROUND The annual incidence of metabolic-associated fatty liver disease(MAFLD)in China has been increasing and is often overlooked owing to its insidious charac-teristics.Approximately 50%of the patients have a no...BACKGROUND The annual incidence of metabolic-associated fatty liver disease(MAFLD)in China has been increasing and is often overlooked owing to its insidious charac-teristics.Approximately 50%of the patients have a normal weight or are not obese.They are said to have lean-type MAFLD,and few studies of such patients are available.Because MAFLD is associated with abnormal lipid metabolism,lipid-targeted metabolomics was used in this study to provide experimental evidence for early diagnosis and pathogenesis.MAFLD and analyze metabolic pathways.UPLC-Q-Orbitrap/MS content determination was used to determine serum palmitic acid(PA),oleic acid(OA),linoleic acid(LA),and arachidonic acid(AA)levels in lean-type MAFLD patients.RESULTS Urea nitrogen and uric acid levels were higher in lean-type MAFLD patients than in healthy individuals(P<0.05).Alanine transaminase and cholinesterase levels were higher in lean-type MAFLD patients than in healthy indi-viduals(P<0.01).The expression of high-density lipoprotein and apolipoprotein A-1 were lower in lean-type MAFLD patients than in healthy individuals(P<0.05)and the expression of triglycerides and fasting blood glucose were increased(P<0.01).A total of 65 biomarkers that affected the synthesis and metabolism of fatty acids were found with P<0.05 and variable importance in projection>1.The levels of PA,OA,LA,and AA were significantly increased compared with healthy individuals.CONCLUSION The metabolic profiles of lean-type MAFLD patients and healthy participants differed significantly,yielding 65 identified biomarkers.PA,OA,LA,and AA exhibited the most significant changes,offering valuable clinical guidance for prevention and treatment of lean-type MAFLD.展开更多
Since ancient times,the inhabitants of dry areas have depended on the date palm(Phoenix dactylifera L.)as a staple food and means of economic security.For example,dates have been a staple diet for the inhabitants of t...Since ancient times,the inhabitants of dry areas have depended on the date palm(Phoenix dactylifera L.)as a staple food and means of economic security.For example,dates have been a staple diet for the inhabitants of the Arabian Peninsula and Sahara Desert in North Africa for millennia and the local culture is rich in knowledge and experience with the benefits of dates,suggesting that dates contain many substances essential for the human body.Madinah dates are considered one of the most important types of dates in the Arabian Peninsula,with Ajwa being one of the most famous types and grown only in Madinah,Saudi Arabia.Date seeds are traditionally used for animal feed,seed oil production,cosmetics,and as a coffee substitute.Phytochemical compounds that have been detected in date fruits and date seeds include phenolic acids,carotenoids,and flavonoids.Phenolic acids are the most prevalent bioactive constituents that contribute to the antioxidant activity of date fruits.The bioactive properties of these phytochemicals are believed to promote human health by reducing the risk of diseases such as chronic inflammation.Ajwa dates especially are thought to have superior bioactivity properties.To investigate these claims,in this study,we compare the metabolic profiles of Ajwa with different types of dates collected from Saudi Arabia and Tunisia.We show by UHPLC-MS that date seeds contain several classes of flavonoids,phenolic acids,and amino acid derivatives,including citric acid,malic acid,lactic acid,and hydroxyadipic acid.Additionally,GC-MS profiling showed that date seeds are richer in metabolite classes,such as hydrocinnamic acids(caffeic,ferulic and sinapic acids),than flesh samples.Deglet N fruit extract(minimum inhibitory concentration:27 MIC/μM)and Sukkari fruit extract(IC_(50):479±0.58μg/mL)have higher levels of antibacterial and antioxidative activity than Ajwa fruits.However,the seed analysis showed that seed extracts have better bioactivity effects than fruit extracts.Specifically,Ajwa extract showed the best MIC and strongest ABTS radical-scavenging activity among examined seed extracts(minimum inhibitory concentration:20μM;IC_(50):54±3.61μg/mL).Our assays are a starting point for more advanced in vitro antibacterial models and investigation into the specific molecules that are responsible for the antioxidative and anti-bacterial activities of dates.展开更多
Objective:To investigate the protective effect of Xingnaojing injection on cerebral ischemia-reperfusion in rats and its metabolic pathway and mechanism.Methods:The cerebral ischemia reperfusion model of rats was esta...Objective:To investigate the protective effect of Xingnaojing injection on cerebral ischemia-reperfusion in rats and its metabolic pathway and mechanism.Methods:The cerebral ischemia reperfusion model of rats was established by suture occlusion.After successful model evaluation,he rats were randomly divided into model group and Xingnaojing group with eight rats in each group.In the sham operation group,only blood vessel separation was performed without embolization.Xingnaojing group was given intraperitoneal injection,model group and sham operation group were given the same dose of normal saline,twice a day.Three days later,HE staining and GC-MS metabolomics were used to detect the changes of endogenous metabolites in the rat brain tissue.Principal component analysis(PCA)and orthogonal partial least squares discriminant analysis(OPLS-DA)were used to screen out differential metabolites and analyze their metabolic pathways.Results:Endogenous metabolites were disturbed after cerebral ischemia-reperfusion injury in rats.Seventy-one different metabolites were screened from the model group and the sham group,of which three were down-regulated and sixty-eight were up-regulated.Eighty-eight different metabolites were found between Xingnaojing group and sham operation group,among which eight were down-regulated and eighty up-regulated.After screening of Xingnaojing group and model group,twelve different metabolites were obtained,among which seven were down-regulated and five up-regulated.By analyzing the differences of metabolites,Xingnaojing injection was considered to be involved in the metabolic pathway after cerebral ischemia-reperfusion in rats,including amino acid metabolism(beta alanine metabolism,alanine,glutamic acid and aspartic acid metabolism,histidine metabolism,arginine and proline metabolism),glutathione metabolism,pyrimidine metabolism,ABC transporter,nitrogen metabolism and other metabolic pathways.Conclusion:Xingnaojing injection can restore the levels of metabolites in cerebral ischemia-reperfusion rats in certain degrees,mainly through amino acid metabolism,ABC transporter,glutathione metabolism and other metabolic pathways to regulate cerebral ischemia-reperfusion injury in rats.展开更多
Objective:To study the protective effect of Buyang Huanwu Decoction on the learning and memory ability of D-gal induced aging mice using GC-MS metabolomics method.Methods:Twenty-four three-month-old kunming animals we...Objective:To study the protective effect of Buyang Huanwu Decoction on the learning and memory ability of D-gal induced aging mice using GC-MS metabolomics method.Methods:Twenty-four three-month-old kunming animals were selected as experimental samples and randomly divided into control group,model group and Buyang Huanwu Decoction according to their body weight.The memory level of experimental animals was detected by novel body recognition test,and the neuron structure of experimental animals was detected by HE staining.The plasma of each group of experimental animals was quantitatively analyzed by gas chromatography-mass spectrometry,and the important metabolites and main metabolic pathways in the process of pathological changes were traced by using plasma metabolism.Results:In HE staining,compared with blank group,hippocampal neurons in model group were disordered and morphologically abnormal.Compared with the model group,the hippocampal neurons in Buyang Huanwu Decoction group arranged regularly and had normal morphology.Compared with blank group,the index of new object recognition in model group was significantly decreased(P<0.05);Compared with model group,the new object recognition index of Buyang Huanwu Decoction group was significantly increased(P<0.05).Five different metabolites of AD were identified by GC-MS,which were L-pyroglutamate,lysine,pyrophosphoric acid,creatinine andα-lactose.Conclusion:Buyang Huanwu Decoction has a significant effect on D-gal model mice,and can effectively improve their learning and memory level.The mechanism may be related to glutathione metabolism and aminophyl biosynthesis.展开更多
Phosphite (Phi)-based fungicides are used to control the oomycete Phytophthora infestans which causes late blight disease, the most devastating disease in potatoes. In order to examine the effects of Phi-based fungici...Phosphite (Phi)-based fungicides are used to control the oomycete Phytophthora infestans which causes late blight disease, the most devastating disease in potatoes. In order to examine the effects of Phi-based fungicides on potato tubers through foliar or post-harvest application, a metabolite profiling approach based on gas chromatography coupled to mass spectrometry (GC-MS) has been established. A total of 132 metabolites were detected using the GC-MS approach. Among these, 34 metabolites were identified after normalization and annotated with a compound name with standard mass spectral library. Metabolomic analysis of Phi-treated plants showed significant differences in the levels of many metabolites especially amino acids. Multivariate statistical approaches, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were employed to explore the relationships between metabolites to detect group differences. A good discrimination between the control and the Phi-treated plants was observed, which demonstrated that significant changes in the metabolite profile have been caused by the two different Phi applications (foliar or post-harvest). This finding suggests that the alteration of specific metabolite levels by accumulation of Phi can lead to resistance against the pathogen.展开更多
Against tumor-dependent metabolic vulnerability is an attractive strategy for tumor-targeted therapy.However,metabolic inhibitors are limited by the drug resistance of cancerous cells due to their metabolic plasticity...Against tumor-dependent metabolic vulnerability is an attractive strategy for tumor-targeted therapy.However,metabolic inhibitors are limited by the drug resistance of cancerous cells due to their metabolic plasticity and heterogeneity.Herein,choline metabolism was discovered by spatially resolved metabolomics analysis as metabolic vulnerability which is highly active in different cancer types,and a choline-modified strategy for small molecule-drug conjugates(SMDCs)design was developed to fool tumor cells into indiscriminately taking in choline-modified chemotherapy drugs for targeted cancer therapy,instead of directly inhibiting choline metabolism.As a proof-of-concept,choline-modified SMDCs were designed,screened,and investigated for their druggability in vitro and in vivo.This strategy improved tumor targeting,preserved tumor inhibition and reduced toxicity of paclitaxel,through targeted drug delivery to tumor by highly expressed choline transporters,and site-specific release by carboxylesterase.This study expands the strategy of targeting metabolic vulnerability and provides new ideas of developing SMDCs for precise cancer therapy.展开更多
Intrahepatic cholestasis of pregnancy(ICP)is related to cholestatic disorder in pregnancy.Total urinary sulfated bile acids(SBAs)were found increased in ICP.We distinguished the metabolic profiling of urinary SBAs in ...Intrahepatic cholestasis of pregnancy(ICP)is related to cholestatic disorder in pregnancy.Total urinary sulfated bile acids(SBAs)were found increased in ICP.We distinguished the metabolic profiling of urinary SBAs in ICP to find potential biomarkers for the diagnosis and grading of ICP.The targeted metabolomics based on high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)was used to analyze urinary SBAs profiling in mild and severe ICP cases,as well as healthy controls.16 kinds of urinary SBAs were determined by HPLC-MS/MS.Sulfated dihydroxy glycine bile acid(di-GBA-S),glycine cholic acid 3-sulfate(GCA-3S),sulfated dihydroxy taurine bile acid(di-TBA-S)and taurine cholic acid 3-sulfate(TCA-3S)increased significantly in ICP group compared with the control group.Seven kinds of SBAs were significantly different(p<0.05)between the ICP group and the control group,with the variable importance in the projection(VIP)value more than one by the orthogonal partial least squares discriminant analysis(OPLS-DA).GCA-3S was well-suited to be used as the biomarker for the diagnosis of ICP with the sensitivity of 100%and specificity of 95.5%.A multi-variable logistic regression containing GCA-3S and di-GBA-S-1 was constructed to distinguish severe ICP from mild ICP,with the sensitivity of 94.4%and specificity of 100%.The developed HPLC-MS/MS method is suitable for the measurement of urinary SBAs profiling.Moreover,the urinary SBAs in the metabolomic profiling have the potential to be used as non-intrusive biomarkers for the diagnosis and grading of ICP.展开更多
With a great difference in therapeutic effects of Mahuang(MH, the stems of Ephedra sinica) and Mahuanggen(MHG, the roots of Ephedra sinica), chemical differences between MH and MHG should be investigated. In the prese...With a great difference in therapeutic effects of Mahuang(MH, the stems of Ephedra sinica) and Mahuanggen(MHG, the roots of Ephedra sinica), chemical differences between MH and MHG should be investigated. In the present study, gas chromatography-mass spectrometry(GC-MS)-based plant metabolomics was employed to compare volatile oil profiles of MH and MHG. The antioxidant activities of volatile oils from MH and MHG were also compared. 32 differential chemical markers were identified according to the variable importance in the projection(VIP) value of orthogonal partial least squares discriminant analysis(OPLS-DA) and P value of Mann-Whitney test. Among them, chemical markers of tetramethylpyrazine(TMP) and α-terpineol were quantified. Their contents were much higher in most MH samples compared with MHG. The antioxidant assay demonstrated that MH had significantly higher free radical-scavenging activity than MHG. Although MH and MHG derived from the same medicinal plant, there was much difference in their volatile oil profiles. MH samples had significantly higher content of two reported pharmacologically important chemical markers of TMP and α-terpineol, which may account for their different antioxidant activities.展开更多
A herbal prescription in traditional Chinese medicine(TCM)has great complexity,with multiple components and multiple targets,making it extremely challenging to determine its bioactive compounds.Yinchenhao Tang(YCHT)ha...A herbal prescription in traditional Chinese medicine(TCM)has great complexity,with multiple components and multiple targets,making it extremely challenging to determine its bioactive compounds.Yinchenhao Tang(YCHT)has been extensively used for the treatment of jaundice disease.Although many studies have examined the efficacy and active ingredients of YCHT,there is still a lack of an in-depth systematic analysis of its effective components,mechanisms,and potential targets—especially one based on clinical patients.This study established an innovative strategy for discovering the potential targets and active compounds of YCHT based on an integrated clinical and animal experiment platform.The serum metabolic profiles and constituents of YCHT in vivo were determined by ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry(UPLC-Q-ToF-MS)-based metabolomics combined with a serum pharmacochemistry method.Moreover,a compound–target–pathway network was constructed and analyzed by network pharmacology and ingenuity pathway analysis(IPA).We found that eight active components could modulate five key targets.These key targets were further verified by enzyme-linked immunosorbent assay(ELISA),which indicated that YCHT exerts therapeutic effects by targeting cholesterol 7a-hydroxylase(CYP7A1),multidrug-resistance-associated protein 2(ABCC2),multidrug-resistance-associated protein 3(ABCC3),uridine diphosphate glucuronosyl transferase 1A1(UGT1A1),and farnesoid X receptor(FXR),and by regulating metabolic pathways including primary bile acid biosynthesis,porphyrin and chlorophyll metabolism,and biliary secretion.Eight main effective compounds were discovered and correlated with the key targets and pathways.In this way,we demonstrate that this integrated strategy can be successfully applied for the effective discovery of the active compounds and therapeutic targets of an herbal prescription.展开更多
Nucleotide pools in mammalian cells change due to the influence of antitumor drugs,which may help in evaluating the drug effect and understanding the mechanism of drug action.In this study,an ion-pair RP-HPLC method w...Nucleotide pools in mammalian cells change due to the influence of antitumor drugs,which may help in evaluating the drug effect and understanding the mechanism of drug action.In this study,an ion-pair RP-HPLC method was used for a simple,sensitive and simultaneous determination of the levels of 12 nucleotides in mammalian cells treated with antibiotic antitumor drugs(daunorubicin,epirubicin and dactinomycin D).Through the use of this targeted metabolomics approach to find potential biomarkers,UTP and ATP were verified to be the most appropriate biomarkers.Moreover,a holistic statistical approach was put forward to develop a model which could distinguish 4 categories of drugs with different mechanisms of action.This model can be further validated by evaluating drugs with different mechanismsof action.This targeted metabolomics study may provide a novel approach to predict the mechanism of action of antitumor drugs.展开更多
Background:Hypertrophic cardiomyopathy(HCM)is an underdiagnosed genetic heart disease worldwide.The management and prognosis of obstructive HCM(HOCM)and non-obstructive HCM(HNCM)are quite different,but it also remains...Background:Hypertrophic cardiomyopathy(HCM)is an underdiagnosed genetic heart disease worldwide.The management and prognosis of obstructive HCM(HOCM)and non-obstructive HCM(HNCM)are quite different,but it also remains challenging to discriminate these two subtypes.HCM is characterized by dysmetabolism,and myocardial amino acid(AA)metabolism is robustly changed.The present study aimed to delineate plasma AA and derivatives profiles,and identify potential biomarkers for HCM.Methods:Plasma samples from 166 participants,including 57 cases of HOCM,52 cases of HNCM,and 57 normal controls(NCs),who first visited the International Cooperation Center for HCM,Xijing Hospital between December 2019 and September 2020,were collected and analyzed by high-performance liquid chromatography-mass spectrometry based on targeted AA metabolomics.Three separate classification algorithms,including random forest,support vector machine,and logistic regression,were applied for the identification of specific AA and derivatives compositions for HCM and the development of screening models to discriminate HCM from NC as well as HOCM from HNCM.Results:The univariate analysis showed that the serine,glycine,proline,citrulline,glutamine,cystine,creatinine,cysteine,choline,and aminoadipic acid levels in the HCM group were significantly different from those in the NC group.Four AAs and derivatives(Panel A;proline,glycine,cysteine,and choline)were screened out by multiple feature selection algorithms for discriminating HCM patients from NCs.The receiver operating characteristic(ROC)analysis in Panel A yielded an area under the ROC curve(AUC)of 0.83(0.75-0.91)in the training set and 0.79(0.65-0.94)in the validation set.Moreover,among 10 AAs and derivatives(arginine,phenylalanine,tyrosine,proline,alanine,asparagine,creatine,tryptophan,ornithine,and choline)with statistical significance between HOCM and HNCM,3 AAs(Panel B;arginine,proline,and ornithine)were selected to differentiate the two subgroups.The AUC values in the training and validation sets for Panel B were 0.83(0.74-0.93)and 0.82(0.66-0.98),respectively.Conclusions:The plasma AA and derivatives profiles were distinct between the HCM and NC groups.Based on the differential profiles,the two established screening models have potential value in assisting HCM screening and identifying whether it is obstructive.展开更多
目的研究采用靶向代谢组学方法,观察苍术麸炒前后对脾虚大鼠血清氨基酸水平的变化,探讨苍术炮制机制。方法72只大鼠随机分成正常组、模型组、低剂量生苍术组(生低组)、中剂量生苍术组(生中组)、高剂量生苍术组(生高组)、低剂量麸炒苍术...目的研究采用靶向代谢组学方法,观察苍术麸炒前后对脾虚大鼠血清氨基酸水平的变化,探讨苍术炮制机制。方法72只大鼠随机分成正常组、模型组、低剂量生苍术组(生低组)、中剂量生苍术组(生中组)、高剂量生苍术组(生高组)、低剂量麸炒苍术组(麸炒低组)、中剂量麸炒苍术组(麸炒中组)和高剂量麸炒苍术组(麸炒高组),共8组,每组9只。除正常组外,模型组通过过度疲劳、苦寒泻下和饮食不节法造模。对各组大鼠采用酶联免疫吸附测定(Enzyme Linked Immunosorbent Assay,ELISA)方法测定颌下腺中水通道蛋白3(Aquaporin-3,AQP-3)、水通道蛋白4(AQP-4)、水通道蛋白5(AQP-5)、水通道蛋白8(AQP-8)的含量,结肠中水通道蛋白1(AQP-1)、水通道蛋白2(AQP-2)、水通道蛋白9(AQP-9)、紧密连接蛋白1(zonula occludes protein-1,ZO-1)的含量。对生中组和麸炒中组采用超高效液相色谱-三重四极杆质谱(Ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry,UH-PLC-MS/MS)检测血清中24种氨基酸水平的变化。结果与正常组比较,模型组中颌下腺AQP-3、AQP-4、AQP-5、AQP-8的含量显著降低(P<0.05);模型组中结肠AQP-1和AQP-2的含量显著升高(P<0.05),AQP-9和ZO-1的含量显著降低(P<0.05)。生苍术和麸炒苍术对上述指标均有调节作用。经进一步同等剂量的生苍术和麸炒苍术相比,麸炒中组使上述指标含量升高更明显。与正常组比较,模型组血清中L-缬氨酸等4种物质的水平显著升高(P<0.05),L-酪氨酸等11种物质的水平均显著降低(P<0.05)。经进一步比较,麸炒苍术对上述指标调节效果优于生苍术。靶向代谢通路分析表明,这些差异代谢物主要与精氨酸和脯氨酸代谢、氨酰tRNA生物合成、甘氨酸、丝氨酸和苏氨酸代谢、乙醛酸和二羧酸代谢通路有关。结论苍术炮制后的增效机制可能与对脾虚大鼠血清中氨基酸调节有关。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.:82104827 and 82274336)the National High Level Hospital Clinical Research Funding,China(Grant No.:2022-PUMCH-A-265)the Young Elite Scientists Sponsorship Program by China Association of Chinese Medicine(Grant No.:CACM-2022-QNRC2-B14).
文摘Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.
基金Supported by Shanghai Natural Science Foundation,No.22ZR1455900Shanghai Putuo District Health System Science and Technology Innovation Project Key Project,No.ptkwws202201Shanghai Putuo District Xinglin Excellent Youth Talent Training Program,No.ptxlyq2201.
文摘BACKGROUND The annual incidence of metabolic-associated fatty liver disease(MAFLD)in China has been increasing and is often overlooked owing to its insidious charac-teristics.Approximately 50%of the patients have a normal weight or are not obese.They are said to have lean-type MAFLD,and few studies of such patients are available.Because MAFLD is associated with abnormal lipid metabolism,lipid-targeted metabolomics was used in this study to provide experimental evidence for early diagnosis and pathogenesis.MAFLD and analyze metabolic pathways.UPLC-Q-Orbitrap/MS content determination was used to determine serum palmitic acid(PA),oleic acid(OA),linoleic acid(LA),and arachidonic acid(AA)levels in lean-type MAFLD patients.RESULTS Urea nitrogen and uric acid levels were higher in lean-type MAFLD patients than in healthy individuals(P<0.05).Alanine transaminase and cholinesterase levels were higher in lean-type MAFLD patients than in healthy indi-viduals(P<0.01).The expression of high-density lipoprotein and apolipoprotein A-1 were lower in lean-type MAFLD patients than in healthy individuals(P<0.05)and the expression of triglycerides and fasting blood glucose were increased(P<0.01).A total of 65 biomarkers that affected the synthesis and metabolism of fatty acids were found with P<0.05 and variable importance in projection>1.The levels of PA,OA,LA,and AA were significantly increased compared with healthy individuals.CONCLUSION The metabolic profiles of lean-type MAFLD patients and healthy participants differed significantly,yielding 65 identified biomarkers.PA,OA,LA,and AA exhibited the most significant changes,offering valuable clinical guidance for prevention and treatment of lean-type MAFLD.
基金KAUST Smart Health Initiative grants(SHI REI 4447)(MJ)and through baseline-funds(MJ).
文摘Since ancient times,the inhabitants of dry areas have depended on the date palm(Phoenix dactylifera L.)as a staple food and means of economic security.For example,dates have been a staple diet for the inhabitants of the Arabian Peninsula and Sahara Desert in North Africa for millennia and the local culture is rich in knowledge and experience with the benefits of dates,suggesting that dates contain many substances essential for the human body.Madinah dates are considered one of the most important types of dates in the Arabian Peninsula,with Ajwa being one of the most famous types and grown only in Madinah,Saudi Arabia.Date seeds are traditionally used for animal feed,seed oil production,cosmetics,and as a coffee substitute.Phytochemical compounds that have been detected in date fruits and date seeds include phenolic acids,carotenoids,and flavonoids.Phenolic acids are the most prevalent bioactive constituents that contribute to the antioxidant activity of date fruits.The bioactive properties of these phytochemicals are believed to promote human health by reducing the risk of diseases such as chronic inflammation.Ajwa dates especially are thought to have superior bioactivity properties.To investigate these claims,in this study,we compare the metabolic profiles of Ajwa with different types of dates collected from Saudi Arabia and Tunisia.We show by UHPLC-MS that date seeds contain several classes of flavonoids,phenolic acids,and amino acid derivatives,including citric acid,malic acid,lactic acid,and hydroxyadipic acid.Additionally,GC-MS profiling showed that date seeds are richer in metabolite classes,such as hydrocinnamic acids(caffeic,ferulic and sinapic acids),than flesh samples.Deglet N fruit extract(minimum inhibitory concentration:27 MIC/μM)and Sukkari fruit extract(IC_(50):479±0.58μg/mL)have higher levels of antibacterial and antioxidative activity than Ajwa fruits.However,the seed analysis showed that seed extracts have better bioactivity effects than fruit extracts.Specifically,Ajwa extract showed the best MIC and strongest ABTS radical-scavenging activity among examined seed extracts(minimum inhibitory concentration:20μM;IC_(50):54±3.61μg/mL).Our assays are a starting point for more advanced in vitro antibacterial models and investigation into the specific molecules that are responsible for the antioxidative and anti-bacterial activities of dates.
基金National Natural Science Foundation of China(No.81673899)。
文摘Objective:To investigate the protective effect of Xingnaojing injection on cerebral ischemia-reperfusion in rats and its metabolic pathway and mechanism.Methods:The cerebral ischemia reperfusion model of rats was established by suture occlusion.After successful model evaluation,he rats were randomly divided into model group and Xingnaojing group with eight rats in each group.In the sham operation group,only blood vessel separation was performed without embolization.Xingnaojing group was given intraperitoneal injection,model group and sham operation group were given the same dose of normal saline,twice a day.Three days later,HE staining and GC-MS metabolomics were used to detect the changes of endogenous metabolites in the rat brain tissue.Principal component analysis(PCA)and orthogonal partial least squares discriminant analysis(OPLS-DA)were used to screen out differential metabolites and analyze their metabolic pathways.Results:Endogenous metabolites were disturbed after cerebral ischemia-reperfusion injury in rats.Seventy-one different metabolites were screened from the model group and the sham group,of which three were down-regulated and sixty-eight were up-regulated.Eighty-eight different metabolites were found between Xingnaojing group and sham operation group,among which eight were down-regulated and eighty up-regulated.After screening of Xingnaojing group and model group,twelve different metabolites were obtained,among which seven were down-regulated and five up-regulated.By analyzing the differences of metabolites,Xingnaojing injection was considered to be involved in the metabolic pathway after cerebral ischemia-reperfusion in rats,including amino acid metabolism(beta alanine metabolism,alanine,glutamic acid and aspartic acid metabolism,histidine metabolism,arginine and proline metabolism),glutathione metabolism,pyrimidine metabolism,ABC transporter,nitrogen metabolism and other metabolic pathways.Conclusion:Xingnaojing injection can restore the levels of metabolites in cerebral ischemia-reperfusion rats in certain degrees,mainly through amino acid metabolism,ABC transporter,glutathione metabolism and other metabolic pathways to regulate cerebral ischemia-reperfusion injury in rats.
基金National Natural Science Foundation of China(No.82174007)Talent Training Project Supported by the Central Government for the Reform and Development of Local Universities+2 种基金Research Project of Heilongjiang Provincial Health Commission(No.2020-303)National Natural Science Foundation of China(No.82003975)Fund Project of Heilongjiang University of Traditional Chinese Medicine(No.2018RCD19,2018pt04)。
文摘Objective:To study the protective effect of Buyang Huanwu Decoction on the learning and memory ability of D-gal induced aging mice using GC-MS metabolomics method.Methods:Twenty-four three-month-old kunming animals were selected as experimental samples and randomly divided into control group,model group and Buyang Huanwu Decoction according to their body weight.The memory level of experimental animals was detected by novel body recognition test,and the neuron structure of experimental animals was detected by HE staining.The plasma of each group of experimental animals was quantitatively analyzed by gas chromatography-mass spectrometry,and the important metabolites and main metabolic pathways in the process of pathological changes were traced by using plasma metabolism.Results:In HE staining,compared with blank group,hippocampal neurons in model group were disordered and morphologically abnormal.Compared with the model group,the hippocampal neurons in Buyang Huanwu Decoction group arranged regularly and had normal morphology.Compared with blank group,the index of new object recognition in model group was significantly decreased(P<0.05);Compared with model group,the new object recognition index of Buyang Huanwu Decoction group was significantly increased(P<0.05).Five different metabolites of AD were identified by GC-MS,which were L-pyroglutamate,lysine,pyrophosphoric acid,creatinine andα-lactose.Conclusion:Buyang Huanwu Decoction has a significant effect on D-gal model mice,and can effectively improve their learning and memory level.The mechanism may be related to glutathione metabolism and aminophyl biosynthesis.
文摘Phosphite (Phi)-based fungicides are used to control the oomycete Phytophthora infestans which causes late blight disease, the most devastating disease in potatoes. In order to examine the effects of Phi-based fungicides on potato tubers through foliar or post-harvest application, a metabolite profiling approach based on gas chromatography coupled to mass spectrometry (GC-MS) has been established. A total of 132 metabolites were detected using the GC-MS approach. Among these, 34 metabolites were identified after normalization and annotated with a compound name with standard mass spectral library. Metabolomic analysis of Phi-treated plants showed significant differences in the levels of many metabolites especially amino acids. Multivariate statistical approaches, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were employed to explore the relationships between metabolites to detect group differences. A good discrimination between the control and the Phi-treated plants was observed, which demonstrated that significant changes in the metabolite profile have been caused by the two different Phi applications (foliar or post-harvest). This finding suggests that the alteration of specific metabolite levels by accumulation of Phi can lead to resistance against the pathogen.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81974500,81773678)the CAMS Innovation Fund for Medical Sciences(Grant No.:2022-I2M-2-001).
文摘Against tumor-dependent metabolic vulnerability is an attractive strategy for tumor-targeted therapy.However,metabolic inhibitors are limited by the drug resistance of cancerous cells due to their metabolic plasticity and heterogeneity.Herein,choline metabolism was discovered by spatially resolved metabolomics analysis as metabolic vulnerability which is highly active in different cancer types,and a choline-modified strategy for small molecule-drug conjugates(SMDCs)design was developed to fool tumor cells into indiscriminately taking in choline-modified chemotherapy drugs for targeted cancer therapy,instead of directly inhibiting choline metabolism.As a proof-of-concept,choline-modified SMDCs were designed,screened,and investigated for their druggability in vitro and in vivo.This strategy improved tumor targeting,preserved tumor inhibition and reduced toxicity of paclitaxel,through targeted drug delivery to tumor by highly expressed choline transporters,and site-specific release by carboxylesterase.This study expands the strategy of targeting metabolic vulnerability and provides new ideas of developing SMDCs for precise cancer therapy.
基金The present work was supported by the Chongqing Postdoctoral Science Foundation(Xm201313)National Natural Science Foundation of China(81471473)Research Fund for the Doctoral Program of Higher Education of China(20115503110013).
文摘Intrahepatic cholestasis of pregnancy(ICP)is related to cholestatic disorder in pregnancy.Total urinary sulfated bile acids(SBAs)were found increased in ICP.We distinguished the metabolic profiling of urinary SBAs in ICP to find potential biomarkers for the diagnosis and grading of ICP.The targeted metabolomics based on high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)was used to analyze urinary SBAs profiling in mild and severe ICP cases,as well as healthy controls.16 kinds of urinary SBAs were determined by HPLC-MS/MS.Sulfated dihydroxy glycine bile acid(di-GBA-S),glycine cholic acid 3-sulfate(GCA-3S),sulfated dihydroxy taurine bile acid(di-TBA-S)and taurine cholic acid 3-sulfate(TCA-3S)increased significantly in ICP group compared with the control group.Seven kinds of SBAs were significantly different(p<0.05)between the ICP group and the control group,with the variable importance in the projection(VIP)value more than one by the orthogonal partial least squares discriminant analysis(OPLS-DA).GCA-3S was well-suited to be used as the biomarker for the diagnosis of ICP with the sensitivity of 100%and specificity of 95.5%.A multi-variable logistic regression containing GCA-3S and di-GBA-S-1 was constructed to distinguish severe ICP from mild ICP,with the sensitivity of 94.4%and specificity of 100%.The developed HPLC-MS/MS method is suitable for the measurement of urinary SBAs profiling.Moreover,the urinary SBAs in the metabolomic profiling have the potential to be used as non-intrusive biomarkers for the diagnosis and grading of ICP.
基金financially supported by the National Science Foundation of China(No.81302733)the research project of Chinese Ministry of education(No.113036A)+3 种基金the Program for Jiangsu province Innovative Research Team,the Program for New Century Excellent Talents in University(No.NCET-13-1036)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities(No.JKZD2013004)the Open Project Program of State Key Laboratory of Natural Medicines,China Pharmaceutical University(Nos.SKLNMZZYQ 201303 and SKLNMKF201220)
文摘With a great difference in therapeutic effects of Mahuang(MH, the stems of Ephedra sinica) and Mahuanggen(MHG, the roots of Ephedra sinica), chemical differences between MH and MHG should be investigated. In the present study, gas chromatography-mass spectrometry(GC-MS)-based plant metabolomics was employed to compare volatile oil profiles of MH and MHG. The antioxidant activities of volatile oils from MH and MHG were also compared. 32 differential chemical markers were identified according to the variable importance in the projection(VIP) value of orthogonal partial least squares discriminant analysis(OPLS-DA) and P value of Mann-Whitney test. Among them, chemical markers of tetramethylpyrazine(TMP) and α-terpineol were quantified. Their contents were much higher in most MH samples compared with MHG. The antioxidant assay demonstrated that MH had significantly higher free radical-scavenging activity than MHG. Although MH and MHG derived from the same medicinal plant, there was much difference in their volatile oil profiles. MH samples had significantly higher content of two reported pharmacologically important chemical markers of TMP and α-terpineol, which may account for their different antioxidant activities.
基金This work was supported by grants from the Key Program of National Natural Science Foundation of China(81430093,81830110,and 81861168037)Heilongjiang Touyan Innovation Team Program.
文摘A herbal prescription in traditional Chinese medicine(TCM)has great complexity,with multiple components and multiple targets,making it extremely challenging to determine its bioactive compounds.Yinchenhao Tang(YCHT)has been extensively used for the treatment of jaundice disease.Although many studies have examined the efficacy and active ingredients of YCHT,there is still a lack of an in-depth systematic analysis of its effective components,mechanisms,and potential targets—especially one based on clinical patients.This study established an innovative strategy for discovering the potential targets and active compounds of YCHT based on an integrated clinical and animal experiment platform.The serum metabolic profiles and constituents of YCHT in vivo were determined by ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry(UPLC-Q-ToF-MS)-based metabolomics combined with a serum pharmacochemistry method.Moreover,a compound–target–pathway network was constructed and analyzed by network pharmacology and ingenuity pathway analysis(IPA).We found that eight active components could modulate five key targets.These key targets were further verified by enzyme-linked immunosorbent assay(ELISA),which indicated that YCHT exerts therapeutic effects by targeting cholesterol 7a-hydroxylase(CYP7A1),multidrug-resistance-associated protein 2(ABCC2),multidrug-resistance-associated protein 3(ABCC3),uridine diphosphate glucuronosyl transferase 1A1(UGT1A1),and farnesoid X receptor(FXR),and by regulating metabolic pathways including primary bile acid biosynthesis,porphyrin and chlorophyll metabolism,and biliary secretion.Eight main effective compounds were discovered and correlated with the key targets and pathways.In this way,we demonstrate that this integrated strategy can be successfully applied for the effective discovery of the active compounds and therapeutic targets of an herbal prescription.
基金supported financially by the Natural Science Foundation of Liaoning Province,China (No.201102210)the Program for Liaoning Innovative Research Team in University (No.LH2012018)
文摘Nucleotide pools in mammalian cells change due to the influence of antitumor drugs,which may help in evaluating the drug effect and understanding the mechanism of drug action.In this study,an ion-pair RP-HPLC method was used for a simple,sensitive and simultaneous determination of the levels of 12 nucleotides in mammalian cells treated with antibiotic antitumor drugs(daunorubicin,epirubicin and dactinomycin D).Through the use of this targeted metabolomics approach to find potential biomarkers,UTP and ATP were verified to be the most appropriate biomarkers.Moreover,a holistic statistical approach was put forward to develop a model which could distinguish 4 categories of drugs with different mechanisms of action.This model can be further validated by evaluating drugs with different mechanismsof action.This targeted metabolomics study may provide a novel approach to predict the mechanism of action of antitumor drugs.
基金funded by the National Key Research&Development Program of China(No.2018YFA0107400)Program for Chang-Jiang Scholars and Innovative Research Team in University(No.PCSIRT-14R08).
文摘Background:Hypertrophic cardiomyopathy(HCM)is an underdiagnosed genetic heart disease worldwide.The management and prognosis of obstructive HCM(HOCM)and non-obstructive HCM(HNCM)are quite different,but it also remains challenging to discriminate these two subtypes.HCM is characterized by dysmetabolism,and myocardial amino acid(AA)metabolism is robustly changed.The present study aimed to delineate plasma AA and derivatives profiles,and identify potential biomarkers for HCM.Methods:Plasma samples from 166 participants,including 57 cases of HOCM,52 cases of HNCM,and 57 normal controls(NCs),who first visited the International Cooperation Center for HCM,Xijing Hospital between December 2019 and September 2020,were collected and analyzed by high-performance liquid chromatography-mass spectrometry based on targeted AA metabolomics.Three separate classification algorithms,including random forest,support vector machine,and logistic regression,were applied for the identification of specific AA and derivatives compositions for HCM and the development of screening models to discriminate HCM from NC as well as HOCM from HNCM.Results:The univariate analysis showed that the serine,glycine,proline,citrulline,glutamine,cystine,creatinine,cysteine,choline,and aminoadipic acid levels in the HCM group were significantly different from those in the NC group.Four AAs and derivatives(Panel A;proline,glycine,cysteine,and choline)were screened out by multiple feature selection algorithms for discriminating HCM patients from NCs.The receiver operating characteristic(ROC)analysis in Panel A yielded an area under the ROC curve(AUC)of 0.83(0.75-0.91)in the training set and 0.79(0.65-0.94)in the validation set.Moreover,among 10 AAs and derivatives(arginine,phenylalanine,tyrosine,proline,alanine,asparagine,creatine,tryptophan,ornithine,and choline)with statistical significance between HOCM and HNCM,3 AAs(Panel B;arginine,proline,and ornithine)were selected to differentiate the two subgroups.The AUC values in the training and validation sets for Panel B were 0.83(0.74-0.93)and 0.82(0.66-0.98),respectively.Conclusions:The plasma AA and derivatives profiles were distinct between the HCM and NC groups.Based on the differential profiles,the two established screening models have potential value in assisting HCM screening and identifying whether it is obstructive.
文摘目的研究采用靶向代谢组学方法,观察苍术麸炒前后对脾虚大鼠血清氨基酸水平的变化,探讨苍术炮制机制。方法72只大鼠随机分成正常组、模型组、低剂量生苍术组(生低组)、中剂量生苍术组(生中组)、高剂量生苍术组(生高组)、低剂量麸炒苍术组(麸炒低组)、中剂量麸炒苍术组(麸炒中组)和高剂量麸炒苍术组(麸炒高组),共8组,每组9只。除正常组外,模型组通过过度疲劳、苦寒泻下和饮食不节法造模。对各组大鼠采用酶联免疫吸附测定(Enzyme Linked Immunosorbent Assay,ELISA)方法测定颌下腺中水通道蛋白3(Aquaporin-3,AQP-3)、水通道蛋白4(AQP-4)、水通道蛋白5(AQP-5)、水通道蛋白8(AQP-8)的含量,结肠中水通道蛋白1(AQP-1)、水通道蛋白2(AQP-2)、水通道蛋白9(AQP-9)、紧密连接蛋白1(zonula occludes protein-1,ZO-1)的含量。对生中组和麸炒中组采用超高效液相色谱-三重四极杆质谱(Ultra high performance liquid chromatography-triple quadrupole tandem mass spectrometry,UH-PLC-MS/MS)检测血清中24种氨基酸水平的变化。结果与正常组比较,模型组中颌下腺AQP-3、AQP-4、AQP-5、AQP-8的含量显著降低(P<0.05);模型组中结肠AQP-1和AQP-2的含量显著升高(P<0.05),AQP-9和ZO-1的含量显著降低(P<0.05)。生苍术和麸炒苍术对上述指标均有调节作用。经进一步同等剂量的生苍术和麸炒苍术相比,麸炒中组使上述指标含量升高更明显。与正常组比较,模型组血清中L-缬氨酸等4种物质的水平显著升高(P<0.05),L-酪氨酸等11种物质的水平均显著降低(P<0.05)。经进一步比较,麸炒苍术对上述指标调节效果优于生苍术。靶向代谢通路分析表明,这些差异代谢物主要与精氨酸和脯氨酸代谢、氨酰tRNA生物合成、甘氨酸、丝氨酸和苏氨酸代谢、乙醛酸和二羧酸代谢通路有关。结论苍术炮制后的增效机制可能与对脾虚大鼠血清中氨基酸调节有关。