To establish a new GC-MS/MS method for quantitative detection of 22 kinds of pesticide in fruit and vegetable including organic phosphorus,carbamate & pyrethrin etc.Working was performed by Xcalibur software with ...To establish a new GC-MS/MS method for quantitative detection of 22 kinds of pesticide in fruit and vegetable including organic phosphorus,carbamate & pyrethrin etc.Working was performed by Xcalibur software with multitask mode.We Carried on qualitative and quantitative analysis to mass spectrum of MS/MS in order to obtained a credible experiment result.This method is sensitive and accurate,it is suitable for determination of multifarious pesticide residues.展开更多
依据专家感官审评结果将14个红茶样本按香气品质的优劣划分为优质红茶与缺陷红茶2组,基于快速气相电子鼻(fast gas chromatography-electronic-nose,GC-E-Nose)和气相色谱-质谱(gas chromatography-mass spectrometry,GC-MS)融合技术结...依据专家感官审评结果将14个红茶样本按香气品质的优劣划分为优质红茶与缺陷红茶2组,基于快速气相电子鼻(fast gas chromatography-electronic-nose,GC-E-Nose)和气相色谱-质谱(gas chromatography-mass spectrometry,GC-MS)融合技术结合多元统计分析对2组茶样进行判别分析,筛选影响两类茶样分类的关键差异组分。结果显示:GC-E-Nose(44维)和GC-MS(73维)相融合可以得到117维融合数据集,用其建立的正交偏最小二乘判别分析模型可以实现两类红茶的准确分类,其模型解释能力和预测能力(R_(Y)^(2)=0.976,Q^(2)=0.959)较单一的GC-E-Nose或GC-MS数据模型更优。基于变量投影重要性>1.6和P<0.05双变量原则,共筛选出二甲基硫醚(B3、B25)、β-紫罗酮(A59)、(3E)-4,8-二甲基壬-1,3,7-三烯(A20)、二氢猕猴桃内酯(A64)、芳樟醇(A17)、苯乙醇(A19)、δ-辛内酯(A41)和γ-壬内酯(A45)8个关键香气组分对分类起重要作用。研究结果表明,GC-E-Nose与GC-MS融合技术可以实现缺陷红茶和优质红茶的快速、准确分类,该方法可作为传统感官审评方法的补充,为红茶品质控制和质量提升提供技术支撑。展开更多
文摘To establish a new GC-MS/MS method for quantitative detection of 22 kinds of pesticide in fruit and vegetable including organic phosphorus,carbamate & pyrethrin etc.Working was performed by Xcalibur software with multitask mode.We Carried on qualitative and quantitative analysis to mass spectrum of MS/MS in order to obtained a credible experiment result.This method is sensitive and accurate,it is suitable for determination of multifarious pesticide residues.
文摘依据专家感官审评结果将14个红茶样本按香气品质的优劣划分为优质红茶与缺陷红茶2组,基于快速气相电子鼻(fast gas chromatography-electronic-nose,GC-E-Nose)和气相色谱-质谱(gas chromatography-mass spectrometry,GC-MS)融合技术结合多元统计分析对2组茶样进行判别分析,筛选影响两类茶样分类的关键差异组分。结果显示:GC-E-Nose(44维)和GC-MS(73维)相融合可以得到117维融合数据集,用其建立的正交偏最小二乘判别分析模型可以实现两类红茶的准确分类,其模型解释能力和预测能力(R_(Y)^(2)=0.976,Q^(2)=0.959)较单一的GC-E-Nose或GC-MS数据模型更优。基于变量投影重要性>1.6和P<0.05双变量原则,共筛选出二甲基硫醚(B3、B25)、β-紫罗酮(A59)、(3E)-4,8-二甲基壬-1,3,7-三烯(A20)、二氢猕猴桃内酯(A64)、芳樟醇(A17)、苯乙醇(A19)、δ-辛内酯(A41)和γ-壬内酯(A45)8个关键香气组分对分类起重要作用。研究结果表明,GC-E-Nose与GC-MS融合技术可以实现缺陷红茶和优质红茶的快速、准确分类,该方法可作为传统感官审评方法的补充,为红茶品质控制和质量提升提供技术支撑。