期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于图像梯度场序列的双向GDIM光流计算方法 被引量:3
1
作者 裴继红 卢宗庆 谢维信 《电子学报》 EI CAS CSCD 北大核心 2007年第7期1301-1305,共5页
提出了一种基于图像梯度矢量场的双向广义动态图像模型(GFBD-GDIM)光流计算方法.本文方法:在图像梯度场上进行光流估计以减弱光照变化带来的影响;将一个大的运动矢量分解为两个不同方向的子矢量进行估计,有助于减小估计误差,提高计算精... 提出了一种基于图像梯度矢量场的双向广义动态图像模型(GFBD-GDIM)光流计算方法.本文方法:在图像梯度场上进行光流估计以减弱光照变化带来的影响;将一个大的运动矢量分解为两个不同方向的子矢量进行估计,有助于减小估计误差,提高计算精度;采用广义动态图像模型(GDIM)对图像梯度场的变化进行建模,可使模型适用于更加一般的场合.图像序列实验表明,本文方法可以获得更加精确和鲁棒的运动矢量估计. 展开更多
关键词 光流 亮度常数模型 图像梯度场 广义动态图像模型 双向估计
下载PDF
区域绿色技术创新驱动因素分析--基于我国省级绿色专利数据的证据 被引量:3
2
作者 张久森 苍正伟 +2 位作者 张雅媛 张子怡 杨悦 《长江技术经济》 2021年第4期50-56,共7页
基于广义迪氏指数分解法(Generalized Divisia Index Method,GDIM),利用长江流域绿色创新专利数据,分解各驱动因素对绿色技术创新的贡献率;结合不同省市的背景分析驱动因素的变化情况,深入研究不同驱动因素影响绿色技术创新的时空差异... 基于广义迪氏指数分解法(Generalized Divisia Index Method,GDIM),利用长江流域绿色创新专利数据,分解各驱动因素对绿色技术创新的贡献率;结合不同省市的背景分析驱动因素的变化情况,深入研究不同驱动因素影响绿色技术创新的时空差异。最后,针对不同地区的主要问题提出政策建议。 展开更多
关键词 绿色技术创新 gdim模型 绿色创新优先度 绿色创新强度 绿色创新效率
下载PDF
Driving factors and spatio-temporal features underlying industrial SO_(2) emissions in“2+26”in North China and extended cities 被引量:2
3
作者 Zhuang Miao Sicen Liu Xiaodong Chen 《Chinese Journal of Population,Resources and Environment》 2020年第4期296-318,共23页
As one of the largest global emitters of sulfur dioxide(SO_(2)),China faces increasing pressure to achieve sustainable economic and social development.Using panel data of 58 prefecture-level cities in North China betw... As one of the largest global emitters of sulfur dioxide(SO_(2)),China faces increasing pressure to achieve sustainable economic and social development.Using panel data of 58 prefecture-level cities in North China between 2003 and 2017,this paper considers the dynamic spatio-temporal characteristics of industrial SO_(2) emissions in the"2+26"in North China and extended cities in North China and decomposes the determinants of industrial SO_(2) emissions into eight effects using the Generalized Divisia Index Model(GDIM).The contributions of each effect on changes in emissions are assessed on regional,provincial,and prefectural levels,as well as according to various stages.The results indicate the following.First,industrial SO2 emissions in the"2+26"cities in North China and extended cities in North China exhibit spatial autocorrelation and agglomeration effects.Cities with high-high(HH)and low-low(LL)agglomeration patterns were concentrated in Shanxi and Henan provinces,respectively.Second,industrialization,energy consumption,and economic development were the main factors that increased industrial SO2 emissions,while technology,energy sulfur intensity,and economic sulfur intensity were the key factors that reduced them.Third,13 cities,induding Tangshan,were the most important regions where further emissions regulations need to be implemented.These cities were divided into three types and different corresponding measures for reducing their emissions are suggested.Based on the conclusions of this study,this paper puts forward some targeted policy recommendations for reducing industrial SO_(2) emissions according to different categories of cities. 展开更多
关键词 Industrial SO_(2)emissions Temporal and spatial distribution characteristics Generalized divisia index model(gdim) Factor decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部