期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing
1
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 geosyntheticS Creep behavior geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
下载PDF
The Efect of Rich Synthetic Copper-rich Solution on Antiseepage Dense Pre-hydration Geosynthetic Clay Liner
2
作者 郭争争 GUAN Junfang +2 位作者 任子杰 GAO Huimin LI Peiyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期796-802,共7页
Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was ... Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was 9.8×10^(−12) m/s.The effect of Cu^(2+)synthetic solution on DPH GCLs was discussed.Furthermore,the effect mechanism was studied on the basis of test technologies.A significant adverse impact on hydraulic performance of DPH GCLs is found when the concentration of Cu^(2+)is greater than 1 g/L.SEM,XRD,XRF,FTIR,and XPS analyses show that the effect of Cu^(2+)on DPH GCLs includes two steps.Firstly,Cu^(2+)interacts with hydrophobic organic matter(HOM),and the adhesion of bentonite is destroyed,and some holes appear.The Cu^(2+)contacts with bentonite directly,and Cu^(2+)interacts with bentonite through ion exchange.Passivated phenomenon occurs on the surface of the bentonite,and swelling ability of bentonite is reduced,which causes permeable DPH GCLs. 展开更多
关键词 geosynthetic clay liners fense pre-hydrated geosynthetic clay liners effect Cu^(2+)
下载PDF
Laboratory large-scale pullout investigation of a new reinforcement ofcomposite geosynthetic strip
3
作者 Mehrdad Tajabadipour Seyed Hamid Lajevardi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1147-1159,共13页
In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a ... In this paper,more than 70 large-scale pullout tests were performed to evaluate the performance of an innovative composite geosynthetic strip(CGS)reinforcement in sandy backfill.The CGS reinforcement is composed of a geosynthetic strip(GS)and parts of a scrap truck tire as transverse members.The experimental pullout results for the CGS reinforcement were compared with the suggested theoretical equations and ordinary reinforcements,including the GS,the steel strip(SS),and the steel strip with rib(SSR).The pullout test results show that adding three transverse members to the GS reinforcement(CGS3)with S/H?6.6(where S and H are the space and height of the transverse members,respectively)increases pullout resistance by more than 120%,170%,and 50%compared to the GS,the SS,and the SSR,respectively.This result shows that the CGS3(CGS with three transverse members)reinforcement needs at least 55.5%,63%,and 33.3%smaller length compared to the GS,the SS,and the SSR,respectively.In general,implementation of mechanically stabilized earth wall(MSEW)with the proposed strip may help geotechnical engineers prevent costly designs and solve the problem of MSEW implementation in cases where there are limitations of space. 展开更多
关键词 Pullout resistance Composite geosynthetic strip(CGS) Soilegeosynthetic interface Scrap tires Large-scale pullout tests
下载PDF
Performance of geosynthetic cementitious composite mat and vetiver on soil erosion control 被引量:3
4
作者 Suched LIKITLERSUANG Kittikhun KOUNYOU Gayuh Aji PRASETYANING TIYAS 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1410-1422,共13页
An understanding of how different land covers affect soil erosion caused by rainfall is necessary in mountainous areas.The land cover usually plays an important role in controlling landslide hazards associated with th... An understanding of how different land covers affect soil erosion caused by rainfall is necessary in mountainous areas.The land cover usually plays an important role in controlling landslide hazards associated with these terrains.This paper presents the results of a field experiment where several types of land covers were placed on a full-scale embankment as erosion control.An 8 m wide,21 m long,and 3 m high embankment with a 45°side-slope was built with lateric soil.The soil was compacted under a relative compaction of 70%to simulate a natural soil slope.Two sides of the embankment were divided into six land cover areas,with three different areas of bare soil,and one each of a geosynthetic cementitious composite mat(GCCM),vetiver grass,and a combination of GCCM and vegetation.Soil erosion and moisture levels were monitored for each land cover area during six natural rainfall events encountered over the experimental period.Field results were compared with a numerical simulation and empirical soil loss equation.The results revealed that the GCCM gave the best erosion control immediately after installation,but vetiver grass also exhibited good erosion control six months postconstruction. 展开更多
关键词 Soil Erosion Field test geosynthetic Vetiver RAINFALL Numerical analysis
下载PDF
Controlling strain in geosynthetic liner systems used in vertically expanded landfills 被引量:3
5
作者 Yunmin Chen Deng Gao Bin Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期48-55,共8页
According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner und... According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner under a variety of factors are important issue to be considered in the design of a landfill expansion.In this paper,we investigate the strain distribution in geosynthetic materials within the composite liner system of expanded landfills,including strains in geosynthetic materials resulting from overall settlement and lateral movement of landfills,localized subsidence in landfills,and differential settlement around gas venting wells.The allowable strains of geosynthetic materials are discussed based on the results of tensile tests,and the corresponding design criteria for composite liner systems are proposed.Meanwhile,practical measures allowing strain control in geosynthetic materials used in landfill engineering are proposed. 展开更多
关键词 LANDFILL composite liner system geosyntheticS STRAIN
下载PDF
Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique 被引量:2
6
作者 Muhammad Nouman Amjad Raja Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期899-911,共13页
In the recent past,the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported.This paper presents the experimental study on the behavi... In the recent past,the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported.This paper presents the experimental study on the behaviour of model strip footing resting on sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings.The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect.It is found that for the same amount of reinforcement material,the wraparound reinforced model resulted in less settlement in comparison to planar reinforced models.The efficiency of wraparound reinforced model increased with the increase in load amplitude and the rate of total cumulative settlement substantially decreased with the increase in number of load cycles.The wraparound reinforced model has shown about 45% lower average total settlement in comparison to unreinforced model,while the double-layer reinforced model has about 41% lower average total settlement at the cost of approximately twice the material and 1.5 times the occupied land width ratio.Moreover,wraparound models have shown much greater stability in comparison to their counterpart models when subjected to incremental repeated loading. 展开更多
关键词 geosyntheticS Repeated loads Wraparound reinforcement technique Model tests Footing settlement Bearing capacity Reinforcement ratio Strip footing
下载PDF
Novel experimental techniques to assess the time-dependent deformations of geosynthetics under soil confinement 被引量:1
7
作者 Carina Maia Lins Costa Jorge Gabriel Zornberg 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期410-419,共10页
A new experimental approach to assess the impact of soil confinement on the long-term behavior of geosynthetics is presented in this paper.The experimental technique described herein includes a novel laboratory appara... A new experimental approach to assess the impact of soil confinement on the long-term behavior of geosynthetics is presented in this paper.The experimental technique described herein includes a novel laboratory apparatus and the use of different types of tests that allow generation of experimental data suitable for evaluation of the time-dependent behavior of geosynthetics under soil confinement.The soil-geosynthetic interaction equipment involves a rigid box capable of accommodating a cubic soil mass under plane strain conditions.A geosynthetic specimen placed horizontally at the mid-height of the soil mass is subjected to sustained vertical pressures that,in turn,induce reinforcement axial loads applied from the soil to the geosynthetic.Unlike previously reported studies on geosynthetic behavior under soil confinement,the equipment was found to be particularly versatile.With minor setup modifications,not only interaction tests but also in-isolation geosynthetic stress relaxation tests and soil-only tests under a constant strain rate can be conducted using the same device.Also,the time histories of the reinforcement loads and corresponding strains are generated throughout the test.Results from typical tests conducted using sand and a polypropylene woven geotextile are presented to illustrate the proposed experimental approach.The testing procedure was found to provide adequate measurements during tests,including good repeatability of test results.The soilegeosynthetic interaction tests were found to lead to increasing geotextile strains with time and decreasing reinforcement tension with time.The test results highlighted the importance of measuring not only the time history of displacements but also that of reinforcement loads during testing.The approach of using different types of tests to analyze the soilegeosynthetic interaction behavior is an innovation that provides relevant insight into the impact of soil confinement on the time-dependent deformations of geosynthetics. 展开更多
关键词 geosyntheticS GEOTEXTILE CREEP Stress relaxation Reinforced soil Long-term deformation
下载PDF
Compaction-induced stress in geosynthetic-reinforced granular base course--A discrete element model 被引量:1
8
作者 Te Pei Xiaoming Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期669-677,共9页
A discrete element method(DEM) model was used to simulate the development of compaction-induced stress in a granular base course, with and without geogrid reinforcement. The granular base course was modeled as a mixtu... A discrete element method(DEM) model was used to simulate the development of compaction-induced stress in a granular base course, with and without geogrid reinforcement. The granular base course was modeled as a mixture of uniformly sized triangular particles. The geogrid was modeled as a series of equally spaced balls that interact with each other through long-range interaction contacts. The longrange interaction contact was also used to simulate a deformable subgrade. The compactor was modeled as a solid cylinder rolling at a constant speed. The DEM model shows that the geogridreinforced granular base course gains additional compaction-induced stress due to the residual tensile stress developed in the geogrid. The residual tensile stress in the geogrid increases with the number of compaction passes. Parametric analyses were also conducted to assess the effects of geogrid stiffness and subgrade modulus on the compaction-induced stress. 展开更多
关键词 COMPACTION geosyntheticS Granular soils Numerical analysis
下载PDF
Critical interfaces in geosynthetic multilayer liner system of a landfill
9
作者 Qian Xuede 《Water Science and Engineering》 EI CAS 2008年第4期22-35,共14页
关键词 LANDFILL geosynthetic multilayer liner failure interface shear strength leaehate level SEEPAGE
下载PDF
Consolidation of soft clay foundation improved by geosyntheticreinforced granular columns:Numerical evaluation
10
作者 Nima R.Alkhorshid Gregório L.S.Araujo Ennio M.Palmeira 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1173-1181,共9页
Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and c... Soft clays are problematic soils as they present high compressibility and low shear strength.There are several methods for improving in situ conditions of soft clays.Based on the geotechnical problem’s geometry and characteristics,the in situ conditions may require reinforcement to restrain instability and construction settlements.Granular columns reinforced by geosynthetic material are widely used to reduce settlements of embankments on soft clays.They also accelerate the consolidation rate by reducing the drainage path’s length and increasing the foundation soil’s bearing capacity.In this study,the performance of encased and layered granular columns in soft clay is investigated and discussed.The numerical results show the significance of geosynthetic stiffness and the column length on the embankment settlements.Furthermore,the results show that granular columns may play an important role in dissipating the excess pore water pressures and accelerating the consolidation settlements of embankments on soft clays. 展开更多
关键词 geosynthetic EMBANKMENT Granular column CONSOLIDATION Soft soil
下载PDF
Study on Swell Pressure Stress of Bentonite in Geosynthetic Clay Liners
11
作者 SHEN Junfeng LI Shengrong +3 位作者 HE Shaohui ZHANG Guangshan TONG Jinggui YAN Bokun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第5期763-769,共7页
The geosynthetic clay liner (GCL) is a kind of waterproofing material used widely in engineering. The waterproof mechanism is understood in terms of bentonite particles becoming water-obstruct colloid layers after t... The geosynthetic clay liner (GCL) is a kind of waterproofing material used widely in engineering. The waterproof mechanism is understood in terms of bentonite particles becoming water-obstruct colloid layers after they sorb water and swell. The swell pressure stress, however, has not been determined directly till now. In our experiment, swell pressure stress of the GCL under saturated water-sorbing condition was measured directly using a custom-made instrument. The results show that (1) the instrument designed by the authors performs satisfactorily and the test results are reproducible; and (2) the trend line of swell pressure stress variation with time can be divided into three segments. The first segment is characterized by a quick increase of the swell force in the first 0-50 hours. The swell pressure stress increases by 7.00×10^-4-1.00×10^-3 MPa/h. The second segment shows a slow increase of the swell pressure stress from the 50th to 1730th hour. The swell force increases by 7.54×10^-6-2.02×10^-5 MPa/h. The third segment is characterized by a little variation in swell pressure stress after 1730 hours. In this segment, the average value of the swell pressure stress measurements is 0.0719 MPa and the maximum value is 0.0729 MPa. It is suggested that the swell pressure stress is mainly raised by water entering pores among montmorillonite particles and interstitial layers in individual montmorillonite crystals, leading to an increase of volume. 展开更多
关键词 geosynthetic clay liners WATERPROOF swell pressure stress test
下载PDF
Use of geosynthetics for performance enhancement of earth structures in cold regions
12
作者 Jie Han Yan Jiang 《Research in Cold and Arid Regions》 CSCD 2013年第5期517-529,共13页
Earth structures, such as roadways, embankments and slopes, and earth retaining walls, have been commonly used in cold regions for transportation and other applications. In addition to typical design considerations fo... Earth structures, such as roadways, embankments and slopes, and earth retaining walls, have been commonly used in cold regions for transportation and other applications. In addition to typical design considerations for earth structures at normal temperature, a design must also consider the unique problems associated with low temperature, such as frost heave, lateral expansion, thaw settlement and weakening, and degradation of material properties. Geosynthetics have been used in cold regions to stabilize earth structures during construction and mitigate potential problems during their service at low tem- perature. This paper provides a state of practice review of the use of geosynthetics for performance enhancement of earth structures in cold regions. This paper starts with basic information on available geosynthetic products and their functions, evaluates properties and behavior of geosynthetics and soil-geosynthetic systems at low temperature, and discusses past studies and their key results on the use of geosynthetics to enhance the performance of roadways, embankments, and earth retaining walls in cold regions. This review reveals that geosynthetics at low temperature have higher tensile strength and stiffness, lower creep rate, and lower elongation at failure. The effect of temperature becomes significant when nonwoven geotextiles are subjected to moistening and soil intrusion at subfreezing temperature. Freeze-thaw cycles may degrade hydraulic and mechanical properties of geosynthetic-soil systems. The inclusion of geosynthetics in soil provides drainage and/or barrier to water flow, retains mechanical properties, and reduces frost heave during and after freeze-thaw cycles. Effectiveness of geosynthetics has been confirmed in the field in bridging over voids, stabilizing roadways over temper- ature-susceptible soils during thaw, and proving drainage and barrier to temperature-susceptible soils before freeze. To avoid frost heave and lateral expansion of backfill in earth retaining walls, granular fill without fines should be used. When backfill with fines is used for earth retaining walls, additional lateral earth pressure induced by soil freeze and thaw set- tlement should be considered in the design. 展开更多
关键词 capillary barrier earth structure freezing-thaw geosynthetic
下载PDF
Potential Calculation on the Oil-Gas Pipeline with Geosynthetic Clay Liners Based on BEM
13
作者 Pengxiang Xing Yu Wang +3 位作者 Hailiang Lu Lei Lan Xishan Wen Shulin Zhang 《Journal of Power and Energy Engineering》 2014年第4期594-599,共6页
Put geosynthetic clay liners around underground oil-gas pipelines can reduce the potential damage to environment but it will also affect the distribution of cathodic protection current. Geosynthetic clay liners can be... Put geosynthetic clay liners around underground oil-gas pipelines can reduce the potential damage to environment but it will also affect the distribution of cathodic protection current. Geosynthetic clay liners can be regarded as anisotropic soil structure and the potential distribution on the pipeline between two adjacent cathodic protection stations was calculated based on boundary element method (BEM). The calculation results indicate that potential distribution on the pipeline with geosynthetic clay liner is lower than before. A 1500 m built pipeline with geosynthetic clay liners was selected to be calculated and to perform field test, which shows that the calculation results tally well with the field test results and the validity of the arithmetic in this paper was verified. 展开更多
关键词 Oil-Gas PIPELINE geosynthetic CLAY LINER Cathodic Protection BOUNDARY Element Method (BEM)
下载PDF
Interaction Properties of Geosynthetic with Different Backfill Soils
14
作者 Md. Bellal Hossain Md. Zakaria Hossain Toshinori Sakai 《International Journal of Geosciences》 2012年第5期1033-1039,共7页
Characterization of a geosynthetic is necessary for its effective use in various field application of reinforced soil structure. In this paper, a new type of geosynthetic has been evaluated for its interaction propert... Characterization of a geosynthetic is necessary for its effective use in various field application of reinforced soil structure. In this paper, a new type of geosynthetic has been evaluated for its interaction properties for different backfill soils using direct shear device. The test results are compared based on the type of soils, inclusions, and interface mechanical properties. Three backfills soils (sandy, clayey, and pure sand) in combination with four different geosynthetics (one geotextile and three geogrids) were tested at various loading conditions in direct shear. Test results reveal that the stress-deformation behaviour of the geotextile and geogrid interfaces with sandy and clayey backfills can be defined as hyperbolic. For the pure sand-geogrid interfaces, the relationship is followed by displacement hardening and softening behaviour. The dilatancy behaviour of a particular soil-geosynthetic interface is found similar at all normal stresses. Both contractive and dilative nature is observed for the interfaces with pure sand. On the contrary, only negative dilatancy or contractive behaviour is observed for sandy and clayey backfills with the same geosynthetics. The test results reveal that the relationship of the interface shear strength with the normal stress is not linear in most cases. Based on the test results, a simplified nonlinear equation is proposed for the soil-geosynthetic interface shear strength envelops which was in good agreement with the experimental data. 展开更多
关键词 geosynthetic Toyoura SAND Direct SHEAR Test Interface SHEAR STRENGTH DILATANCY BEHAVIOUR
下载PDF
Recent advances in geosynthetic-reinforced retaining Nails for highway applications 被引量:9
15
作者 Jie HAN Yan JIANG Chao XU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第2期239-247,共9页
Geosynthetic-reinforced retaining (GRR) walls have been increasingly used to support roadways and bridge abutments in highway projects. In recent years, advances have been made in construction and design of GRR wall... Geosynthetic-reinforced retaining (GRR) walls have been increasingly used to support roadways and bridge abutments in highway projects. In recent years, advances have been made in construction and design of GRR walls for highway applications. For example, piles have been installed inside GRR walls to support bridge abutments and sound barrier walls. Geosynthetic layers at closer spacing are used in GRR walls to form a composite mass to support an integrated bridge system. This system is referred to as a geosynthetic-reinforced soil (GRS)-integrated bridge systems (IBS) or GRS-IBS. In addition, short geosynthetic layers have been used as secondary reinforcement in a GRR wall to form a hybrid GRR wall (HGRR wall) and reduce tension in primary reinforcement and facing deflections. These new technologies have improved performance of GRR walls and created more economic solutions; however, they have also created more complicated problems for analysis and design. This paper reviews recent studies on these new GRR wall systems, summarizes key results and findings including but not limited to vertical and lateral earth pressures, wall facing deflections, and strains in geosynthetic layers, discusses design aspects, and presents field applications for these new GRR wall systems. 展开更多
关键词 BRIDGE geosynthetic HIGHWAY REINFORCED WALL
原文传递
Simulation of filling construction of permeable geosynthetic tubes 被引量:5
16
作者 Wei-chao LIU Yi-ping ZHANG +1 位作者 Tao LI Ya-nan YU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第6期425-431,共7页
The filling construction of permeable geosynthetic tubes is considered.First,an analytical approach is developed to determine the internal pressure,tension and shape of the cross section of a geosynthetic tube based o... The filling construction of permeable geosynthetic tubes is considered.First,an analytical approach is developed to determine the internal pressure,tension and shape of the cross section of a geosynthetic tube based on its volume.An analytical solution for the drainage rate of the tube is then derived.The course of the filling construction is divided into several time intervals and the volume of the tube after each interval is obtained from the equilibrium of flow calculated from the drainage rate and filling rate.The validity of our analytical approach is tested by comparing our results with previously published experimental result.The results of this comparison indicate that our method is applicable for simulating the filling construction of permeable geosynthetic tubes. 展开更多
关键词 geosynthetic tube Filling construction SIMULATION Volume of the tube Drainage rate
原文传递
Geosynthetics used to stabilize vegetated surfaces for environmental sustainability in civil engineering 被引量:1
17
作者 Jie HAN Jun GUO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2017年第1期56-65,共10页
Geosynthetics, factory-manufactured polymer materials, have been successfully used to solve many geotechnical problems in civil engineering. Two common applications are earth stabilization and erosion control. Geosynt... Geosynthetics, factory-manufactured polymer materials, have been successfully used to solve many geotechnical problems in civil engineering. Two common applications are earth stabilization and erosion control. Geosynthetics used for earth stabilization include but are not limited to stabilized slopes, walls, embankments, and roads. Geosynthetics used for erosion control are mostly related to slopes, river channels and banks, and pond spillways. To enhance environmental sustainability, vegetation has been increasingly planted on the facing or surfaces of these earth structures. Under such a condition, geosynthetics mainly function as surficial soil stabilization while vegetation provides green appearance and erosion protection of earth surfaces. Recently, geosynthetic or geosynthetic-like material has been used to form green walls outside or inside buildings to enhance sustainability. Geosynthetics and vegetation are often integrated to provide combined benefits. The interaction between geosynthetics and vegetation is important for the sustainability of the earth and building wall surfaces. This paper provides a review of the current practice and research in the geosynthetic stabilization of vegetated earth and building surfaces for environmental sustainability in civil engineering with the emphases on geosynthetic used for erosion protection, geosynthetic-stabilized slopes, geosynthetic-stabilized unpaved shoulders and parking lots, and geosynthetic-stabilized vegetated building surfaces. 展开更多
关键词 EROSION geosynthetic stabilization SUSTAINABILITY VEGETATION
原文传递
Seismic effects on reinforcement load and lateral deformation of geosynthetic-reinforced soil walls
18
作者 Fei ZHANG Yuming ZHU +1 位作者 Yanbo CHEN Shangchuan YANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第4期1001-1015,共15页
Current design methods for the internal stability of geosynthetic-reinforced soil(GRS)walls postulate seismic forces as inertial forces,leading to pseudo-static analyses based on active earth pressure theory,which yie... Current design methods for the internal stability of geosynthetic-reinforced soil(GRS)walls postulate seismic forces as inertial forces,leading to pseudo-static analyses based on active earth pressure theory,which yields unconservative reinforcement loads required for seismic stability.Most seismic analyses are limited to the determination of maximum reinforcement strength.This study aimed to calculate the distribution of the reinforcement load and connection strength required for each layer of the seismic GRS wall.Using the top-down procedure involves all of the possible failure surfaces for the seismic analyses of the GRS wall and then obtains the reinforcement load distribution for the limit state.The distributions are used to determine the required connection strength and to approximately assess the facing lateral deformation.For sufficient pullout resistance to be provided by each reinforcement,the maximum required tensile resistance is identical to the results based on the Mononobe-Okabe method.However,short reinforcement results in greater tensile resistances in the mid and lower layers as evinced by compound failure frequently occurring in GRS walls during an earthquake.Parametric studies involving backfill friction angle,reinforcement length,vertical seismic acceleration,and secondary reinforcement are conducted to investigate seismic impacts on the stability and lateral deformation of GRS walls. 展开更多
关键词 geosyntheticS reinforced soil retaining walls seismic performance
原文传递
Experimental study on geosynthetic-reinforced sand fill over marine clay with or without deep cement mixed soil columns under different loadings
19
作者 Pei-Chen Wu Jian-Hua Yin +1 位作者 Wei-Qiang Feng Wen-Bo Chen 《Underground Space》 SCIE EI 2019年第4期340-347,共8页
Geosynthetics and deep cement mixed(DCM)soil columns have been widely used to improve soft soil grounds in many countries and regions.This paper presents an experimental study on a geosynthetic-reinforced sand fill ov... Geosynthetics and deep cement mixed(DCM)soil columns have been widely used to improve soft soil grounds in many countries and regions.This paper presents an experimental study on a geosynthetic-reinforced sand fill over marine clay with or without DCM columns under different loadings.Two tests were conducted on the sand fill reinforced with fixed-end and free-end geosynthetics over marine clay under three-stage local loading to investigate the effects of the boundary conditions of geosynthetic reinforcement on reducing settlements.It is observed that the fixed-end geosynthetic sheet is more effective in reducing settlements than the free-end condition under identical local loading.Another test was conducted on the fixed-end geosynthetic-reinforced sand fill over the marine clay improved by DCM columns under single-stage uniform loading.The vertical stresses on the marine clay and on the DCM columns,as well as the tensile strains of the geosynthetic sheet in the overlying sand fill,were measured.The results revealed that the stress concentration ratio increases with an increase in consolidation settlements,and the maximum tensile strain of the geosynthetic sheet occurs near the edge rather than at the center of the top surface of the DCM columns. 展开更多
关键词 SETTLEMENT geosynthetic REINFORCEMENT Deep cement mixed soil columns
原文传递
Railroad bed bearing strength in the period of thawing and methods of its enhancement 被引量:3
20
作者 Andrey Petryaev Anastasia Morozova 《Research in Cold and Arid Regions》 CSCD 2013年第5期548-553,共6页
The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the propert... The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the properties of clay soils that form the railway are from hydration, fieeze-thaw cycles and vibrodynamic impact of Wains. The increase in soil moisture is due to infillration of water into the ground, as well as the rise in water level due to soil redistribution during winter freezes. This can dramatically alter the basic characteristics of the soil, such as shear resistance and bulk density, on which strength and stability of soil mass depend primarily. Therefore, the degree of railway bed stability is not constant, but varies with time. 展开更多
关键词 beating capacity thawing layer vibrodynamic load geosynthetic material
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部