The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities i...The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities is first modified according to the ionospheric anisotropy.Then propagation wave equations in random medium are deduced in the case of oblique incidence in GEO SAR.The amplitude and phase errors induced by the random electron fluctuations are generated by the iterated MPS simulations and are superimposed into the GEO SAR signals.Through the following imaging and evaluation,the effects of the anisotropic ionospheric scintallition on GEO SAR are assessed.At last,the optimized integration time under different ionospheric scintillation conditions are recommended through Monte Carlo experiments.It is concluded that,greater ionospheric fluctuations and longer integration time will result in more severe deterioration,even no focus at all in the worst case.展开更多
The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system,which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement.Wi...The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system,which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement.With an orbit altitude of approximately 36 000 km,the orbit motion and orbit disturbance effects of GEOCSAR behave differently from those of the conventional spaceborne SAR.In this paper,we analyze the effects of orbit errors on GEOCSAR imaging and interferometric processing.First,we present the GEOCSAR imaging geometry and the orbit errors model based on perturbation analysis.Then,we give the GEOCSAR signal formulation based on imaging geometry,and analyze the effect of the orbit error on the output focused signal.By interferometric processing on the 3D reconstructed images,the relationship between satellite orbit errors and the interferometric phase is deduced.Simulations demonstrate the effects of orbit errors on the GEOCSAR images,interferograms,and the deformations.The conclusions are that the required relative accuracy of orbit estimation should be at centimeter level for GEOCSAR imaging at L-band,and that millimeter-scale accuracy is needed for GEOCSAR interferometric processing.展开更多
Based on its ability to obtain two-dimensional(2D)high-resolution images in all-time and all-weather conditions,spaceborne synthetic aperture radar(SAR)has become an important remote sensing technique and the study of...Based on its ability to obtain two-dimensional(2D)high-resolution images in all-time and all-weather conditions,spaceborne synthetic aperture radar(SAR)has become an important remote sensing technique and the study of such systems has entered a period of vigorous development.Advanced imaging modes such as radar interferometry,tomography,and multi-static imaging,have been demonstrated.However,current in-orbit spaceborne SARs,which all operate in low Earth orbits,have relatively long revisit times ranging from several days to dozens of days,restricting their temporal sampling rate.Geosynchronous SAR(GEO SAR)is an active research area because it provides significant new capability,especially its much-improved temporal sampling.This paper reviews the research progress of GEO SAR technologies in detail.Two typical orbit schemes are presented,followed by the corresponding key issues,including system design,echo focusing,main disturbance factors,repeat-track interferometry,etc,inherent to these schemes.Both analysis and solution research of the above key issues are described.GEO SAR concepts involving multiple platforms are described,including the GEO SAR constellation,GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR,and formation flying GEO SAR(FF-GEO SAR).Due to the high potential of FF-GEO SAR for three-dimensional(3D)deformation retrieval and coherence-based SAR tomography(TomoSAR),we have recently carried out some research related to FF-GEO SAR.This research,which is also discussed in this paper,includes developing a formation design method and an improved TomoSAR processing algorithm.It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future.展开更多
Up-to-date digital elevation model(DEM)products are essential in many fields such as hazards mitigation and urban management.Airborne and low-earth-orbit(LEO)space-borne interferometric synthetic aperture radar(InSAR)...Up-to-date digital elevation model(DEM)products are essential in many fields such as hazards mitigation and urban management.Airborne and low-earth-orbit(LEO)space-borne interferometric synthetic aperture radar(InSAR)has been proven to be a valuable tool for DEM generation.However,given the limitations of cost and satellite repeat cycles,it is difficult to generate or update DEMs very frequently(e.g.,on a daily basis)for a very large area(e.g.,continental scale or greater).Geosynchronous synthetic aperture radar(GEOSAR)satellites fly in geostationary earth orbits,allowing them to observe the same ground area with a very short revisit time(daily or shorter).This offers great potential for the daily DEM generation that is desirable yet thus far impossible with space-borne sensors.In this work,we systematically analyze the quality of daily GEOSAR DEM.The results indicate that the accuracy of a daily GEOSAR DEM is generally much lower than what can be achieved with typical LEO synthetic aperture radar(SAR)sensors;therefore,it is important to develop techniques to mitigate the effects of errors in GEOSAR DEM generation.展开更多
Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio...Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.展开更多
基金Supported by the National Natural Science Foundation of China(61225005,61427802,61471038,61120106004)Chang Jiang Scholars Program(T2012122)+1 种基金111 project of China(B14010)Beijing Higher Education Young Elite Teacher Project(YETP1168)
文摘The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities is first modified according to the ionospheric anisotropy.Then propagation wave equations in random medium are deduced in the case of oblique incidence in GEO SAR.The amplitude and phase errors induced by the random electron fluctuations are generated by the iterated MPS simulations and are superimposed into the GEO SAR signals.Through the following imaging and evaluation,the effects of the anisotropic ionospheric scintallition on GEO SAR are assessed.At last,the optimized integration time under different ionospheric scintillation conditions are recommended through Monte Carlo experiments.It is concluded that,greater ionospheric fluctuations and longer integration time will result in more severe deterioration,even no focus at all in the worst case.
基金Project(No.2009CB724003) supported by the National Basic Re-search Program (973) of China
文摘The geosynchronous circular synthetic aperture radar (GEOCSAR) is an innovative SAR system,which can produce high resolution three-dimensional (3D) images and has the potential to provide 3D deformation measurement.With an orbit altitude of approximately 36 000 km,the orbit motion and orbit disturbance effects of GEOCSAR behave differently from those of the conventional spaceborne SAR.In this paper,we analyze the effects of orbit errors on GEOCSAR imaging and interferometric processing.First,we present the GEOCSAR imaging geometry and the orbit errors model based on perturbation analysis.Then,we give the GEOCSAR signal formulation based on imaging geometry,and analyze the effect of the orbit error on the output focused signal.By interferometric processing on the 3D reconstructed images,the relationship between satellite orbit errors and the interferometric phase is deduced.Simulations demonstrate the effects of orbit errors on the GEOCSAR images,interferograms,and the deformations.The conclusions are that the required relative accuracy of orbit estimation should be at centimeter level for GEOCSAR imaging at L-band,and that millimeter-scale accuracy is needed for GEOCSAR interferometric processing.
基金This work was funded in part by the National Natural Science Foundation of China under Grant Nos.61960206009,61971039,and 61971037the Distinguished Young Scholars of Chongqing(Grant No.cstc2020jcyj-jqX0008)+2 种基金the National Ten Thousand Talents Program‘Young Top Talent’(Grant No.W03070007)the Special Fund for Research on National Major Research Instruments(NSFC Grant Nos.61827901,31727901)the Young Elite Scientists Sponsorship Program by CAST(2017QNRC001).
文摘Based on its ability to obtain two-dimensional(2D)high-resolution images in all-time and all-weather conditions,spaceborne synthetic aperture radar(SAR)has become an important remote sensing technique and the study of such systems has entered a period of vigorous development.Advanced imaging modes such as radar interferometry,tomography,and multi-static imaging,have been demonstrated.However,current in-orbit spaceborne SARs,which all operate in low Earth orbits,have relatively long revisit times ranging from several days to dozens of days,restricting their temporal sampling rate.Geosynchronous SAR(GEO SAR)is an active research area because it provides significant new capability,especially its much-improved temporal sampling.This paper reviews the research progress of GEO SAR technologies in detail.Two typical orbit schemes are presented,followed by the corresponding key issues,including system design,echo focusing,main disturbance factors,repeat-track interferometry,etc,inherent to these schemes.Both analysis and solution research of the above key issues are described.GEO SAR concepts involving multiple platforms are described,including the GEO SAR constellation,GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR,and formation flying GEO SAR(FF-GEO SAR).Due to the high potential of FF-GEO SAR for three-dimensional(3D)deformation retrieval and coherence-based SAR tomography(TomoSAR),we have recently carried out some research related to FF-GEO SAR.This research,which is also discussed in this paper,includes developing a formation design method and an improved TomoSAR processing algorithm.It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future.
基金This work was partly supported by the Research Grants Council(RGC)of Hong Kong Special Administrative Region(PolyU 152232/17E and PolyU 152164/18E)Research Institute for Sustainable Urban Development of the Hong Kong Polytechnic University(1-BBWB).
文摘Up-to-date digital elevation model(DEM)products are essential in many fields such as hazards mitigation and urban management.Airborne and low-earth-orbit(LEO)space-borne interferometric synthetic aperture radar(InSAR)has been proven to be a valuable tool for DEM generation.However,given the limitations of cost and satellite repeat cycles,it is difficult to generate or update DEMs very frequently(e.g.,on a daily basis)for a very large area(e.g.,continental scale or greater).Geosynchronous synthetic aperture radar(GEOSAR)satellites fly in geostationary earth orbits,allowing them to observe the same ground area with a very short revisit time(daily or shorter).This offers great potential for the daily DEM generation that is desirable yet thus far impossible with space-borne sensors.In this work,we systematically analyze the quality of daily GEOSAR DEM.The results indicate that the accuracy of a daily GEOSAR DEM is generally much lower than what can be achieved with typical LEO synthetic aperture radar(SAR)sensors;therefore,it is important to develop techniques to mitigate the effects of errors in GEOSAR DEM generation.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61427802,31727901,61625103,61501032,61471038the Chang Jiang Scholars Program(T2012122)+1 种基金part by the 111 project of China under Grant B14010supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
文摘Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.