期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
CC-GEP:基于聚类竞争的基因表达式编程新算法 被引量:2
1
作者 巩杰 唐常杰 +3 位作者 徐开阔 段磊 魏绪仲 姜页希 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期530-536,共7页
基因表达式编程(GEP)融合了遗传算法和遗传编程的优点,进化速度提高了2~4个数量级,但在解决复杂问题时仍存在早熟现象.为解决这个问题,做了下列工作:(1)定义了种群多样性度量和选择压力,分析了传统GEP算法选择操作的不足;(2)把聚类思... 基因表达式编程(GEP)融合了遗传算法和遗传编程的优点,进化速度提高了2~4个数量级,但在解决复杂问题时仍存在早熟现象.为解决这个问题,做了下列工作:(1)定义了种群多样性度量和选择压力,分析了传统GEP算法选择操作的不足;(2)把聚类思想引入选择操作中,提出了基于聚类竞争GEP算法CC-GEP(GEP based on Cluster Competition),证明了CC-GEP能自适应地根据种群多样性调节选择压力;(3)实验表明CC-GEP比传统GEP成功率高36%,模型精度R-square提高8%,多次运行的最优适应度平均值提高了8%,说明CC-GEP算法更加稳定,较好地克服了GEP的早熟问题. 展开更多
关键词 基因表达式编程 早熟 选择算子 聚类
原文传递
求解函数优化问题的改进的人工蜂群算法 被引量:15
2
作者 葛宇 梁静 +1 位作者 王学平 谢小川 《计算机科学》 CSCD 北大核心 2013年第8期252-257,共6页
为提高人工蜂群算法求解复杂函数优化问题的性能,分析了算法中侦察蜂逃逸行为的不足,并对其进行改进:定义了逃逸指标,使其能准确地反映个体状态对算法早熟的影响;重新设计选择机制,让侦察蜂不需要参数控制,能自适应地选择可能导致算法... 为提高人工蜂群算法求解复杂函数优化问题的性能,分析了算法中侦察蜂逃逸行为的不足,并对其进行改进:定义了逃逸指标,使其能准确地反映个体状态对算法早熟的影响;重新设计选择机制,让侦察蜂不需要参数控制,能自适应地选择可能导致算法早熟收敛的个体执行逃逸操作;改进了逃逸算子,降低了逃逸操作的盲目性。通过9个典型测试问题的实验结果表明:在指定误差精度下,本改进算法均能有效收敛;同时与基本人工蜂群算法和已有的典型改进相比,本改进算法在收敛精度和速度上均有明显提高。说明提出的改进策略能有效提高算法求解复杂函数优化问题的能力。 展开更多
关键词 人工蜂群算法 早熟收敛 逃逸指标 选择机制 逃逸算子
下载PDF
基于聚类排序选择方法的进化算法 被引量:4
3
作者 徐开阔 唐常杰 +2 位作者 刘胤田 张天庆 段磊 《计算机科学与探索》 CSCD 2008年第3期321-329,共9页
为提高进化算法的效率,提出了聚类排序选择方法。主要工作有:(1)提出了新的种群内个体相似度度量,并使用种群所包含不同簇的数量来描述和度量种群的多样性;(2)为解决早熟问题提出了新的基于种群聚类和排序选择的聚类-排序选择方法;(3)... 为提高进化算法的效率,提出了聚类排序选择方法。主要工作有:(1)提出了新的种群内个体相似度度量,并使用种群所包含不同簇的数量来描述和度量种群的多样性;(2)为解决早熟问题提出了新的基于种群聚类和排序选择的聚类-排序选择方法;(3)导出了选择压力-种群多样性(SP-PD)方程,该方程能描述进化过程中选择压力随种群多样性变化的规律。在基于全面学习粒子群算法环境中作了详实的实验,对16个多峰函数进行了优化。实验结果表明,在10维和30维条件下,在15个函数优化中,新方法明显优于指数排序选择方法,最高能使精度提高4个数量级。 展开更多
关键词 聚类排序选择 进化计算 指数排序选择 早熟问题 基于全面学习的粒子群算法
下载PDF
自适应变异的蝙蝠算法 被引量:5
4
作者 岳小雪 郑云水 林俊亭 《计算机测量与控制》 2015年第2期516-519,528,共5页
针对基本蝙蝠算法(BA)寻优精度不高、收敛速度慢和易早熟收敛的问题,提出一种改进的具有自适应变异机制的蝙蝠算法,用以求解复杂函数问题;利用K-means聚类对蝙蝠种群进行初始化,使种群在搜索空间分布更为均匀;采用根据迭代次数自适应变... 针对基本蝙蝠算法(BA)寻优精度不高、收敛速度慢和易早熟收敛的问题,提出一种改进的具有自适应变异机制的蝙蝠算法,用以求解复杂函数问题;利用K-means聚类对蝙蝠种群进行初始化,使种群在搜索空间分布更为均匀;采用根据迭代次数自适应变化的控制概率Pt判断算法是否进行高斯变异,增强种群多样性,促使蝙蝠个体跳出局部极值点;将自然选择思想引入BA,提高算法搜索速度,避免早熟收敛;选取几个典型函数进行测试,结果表明改进算法优化性能有了显著提高,具有较快的收敛速度,较高的寻优精度、收敛稳定性和收敛可靠性,验证了改进蝙蝠算法(IBA)的有效性及优越性。 展开更多
关键词 聚类 自适应变异 蝙蝠算法 自然选择 早熟收敛
下载PDF
自适应多克隆聚类算法及收敛性分析 被引量:3
5
作者 马力 焦李成 +1 位作者 白琳 陈长国 《模式识别与人工智能》 EI CSCD 北大核心 2008年第1期72-81,共10页
基于生物体免疫和克隆基本原理,提出一种自适应多克隆聚类算法.其核心思想是将多种人工免疫系统算子用于聚类过程,并以亲和度函数为依据自动调整聚类类别.算法引入重组算子来增加抗体种群中个体的多样性以扩大解的搜索范围,避免算法早... 基于生物体免疫和克隆基本原理,提出一种自适应多克隆聚类算法.其核心思想是将多种人工免疫系统算子用于聚类过程,并以亲和度函数为依据自动调整聚类类别.算法引入重组算子来增加抗体种群中个体的多样性以扩大解的搜索范围,避免算法早熟现象.引入非一致变异算子增强局部求解的自适应性、优化局部求解性能,加快算法收敛速度.另外,还利用Markov链证明算法的收敛性.数据仿真实验结果表明该聚类算法能实现合理有效的聚类. 展开更多
关键词 克隆选择 聚类分析 重组与交叉算子 非一致性变异 MARKOV链 收敛性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部