The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hou...The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hour-fasted STZ-diabetic mice, glucose and insulin tolerances were assessed by intraperitoneal glucose (1.5 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Effects of GF on insulin signaling pathways in soleus muscle such as glucose uptake, expression of glucose transporter 4 (GLUT4) in the plasma membrane and phosphorylation of Akt (P-Akt) in cytosolic fraction were examined in STZ-diabetic mice. In IPGTT test, GF significantly accelerated clearance of exogenous glucose and its glucose-lowering action was greater than H2O-treated controlin STZ-diabetic mice. GF also promoted an exogenous glucose-increased insulin level in STZ-diabetic mice. In IPITT test, GF decreased glucose level to the greater extent than H2O-treated control in STZ-diabetic mice. Furthermore, GF significantly decreased high HOMA-IR in STZ-diabetic mice from 21.6 ± 2.4 to 12.4 ± 1.9 (mg/dl × μU/ml). These results implied that GF improved insulin resistance in STZ-diabetic mice. GF increased glucose uptake of soleus muscle 1.5 times greater than H2O-treated control in STZ-diabetic mice. GF enlarged insulin (10 nmol/ml)-increased glucose uptake to 1.8 time-greater. Correspondingly, GF increased expression of GLUT4 in the plasma membrane of soleus muscle to 1.4 time-greater, and P-Akt in the cytosolic fraction of soleus muscle to 1.9 time-greater than those in H2O-treated control. In conclusion, the improvement of GF on insulin resistance is associated with the repair of insulin signaling via P-Akt, GLUT4 and glucose uptake pathway in soleus muscle of STZ-diabetic mice.展开更多
Several geometric sequences have very low linear complexities when considered as sequences over GF(p), such as the binary sequences of period q^n - 1 constructed by Chan and Games [1-2] (q is a prime power p^m, p i...Several geometric sequences have very low linear complexities when considered as sequences over GF(p), such as the binary sequences of period q^n - 1 constructed by Chan and Games [1-2] (q is a prime power p^m, p is an odd prime) with the maximal possible linear complexity q^n-1 when considered as sequences over GF(2). This indicates that binary sequences with high GF(2) linear complexities LC2 and low GF(p)-linear complexities LCp are not secure for use in stream ciphers. In this article, several lower bounds on the GF(p)-linear complexities of binary sequences is proved and the results are applied to the GF(p)-linear complexities of Blum-Blum-Shub, self-shrinking, and de Bruijn sequences. A lower bound on the number of the binary sequences with LC2 〉 LCD is also presented.展开更多
文摘The mechanisms of Gardeniae Fructus (GF) for anti-hyperglycemic action were demonstrated in streptozotocin (STZ)-diabetic mice. Six hours after single intraperitoneal administration of GF (300 mg/kg) or H2O into 3 hour-fasted STZ-diabetic mice, glucose and insulin tolerances were assessed by intraperitoneal glucose (1.5 g/kg) tolerance test (IPGTT) and intraperitoneal insulin (0.65 U/kg) tolerance test (IPITT), respectively. Effects of GF on insulin signaling pathways in soleus muscle such as glucose uptake, expression of glucose transporter 4 (GLUT4) in the plasma membrane and phosphorylation of Akt (P-Akt) in cytosolic fraction were examined in STZ-diabetic mice. In IPGTT test, GF significantly accelerated clearance of exogenous glucose and its glucose-lowering action was greater than H2O-treated controlin STZ-diabetic mice. GF also promoted an exogenous glucose-increased insulin level in STZ-diabetic mice. In IPITT test, GF decreased glucose level to the greater extent than H2O-treated control in STZ-diabetic mice. Furthermore, GF significantly decreased high HOMA-IR in STZ-diabetic mice from 21.6 ± 2.4 to 12.4 ± 1.9 (mg/dl × μU/ml). These results implied that GF improved insulin resistance in STZ-diabetic mice. GF increased glucose uptake of soleus muscle 1.5 times greater than H2O-treated control in STZ-diabetic mice. GF enlarged insulin (10 nmol/ml)-increased glucose uptake to 1.8 time-greater. Correspondingly, GF increased expression of GLUT4 in the plasma membrane of soleus muscle to 1.4 time-greater, and P-Akt in the cytosolic fraction of soleus muscle to 1.9 time-greater than those in H2O-treated control. In conclusion, the improvement of GF on insulin resistance is associated with the repair of insulin signaling via P-Akt, GLUT4 and glucose uptake pathway in soleus muscle of STZ-diabetic mice.
基金supported by the National Natural Science Foundation of China (10871068)
文摘Several geometric sequences have very low linear complexities when considered as sequences over GF(p), such as the binary sequences of period q^n - 1 constructed by Chan and Games [1-2] (q is a prime power p^m, p is an odd prime) with the maximal possible linear complexity q^n-1 when considered as sequences over GF(2). This indicates that binary sequences with high GF(2) linear complexities LC2 and low GF(p)-linear complexities LCp are not secure for use in stream ciphers. In this article, several lower bounds on the GF(p)-linear complexities of binary sequences is proved and the results are applied to the GF(p)-linear complexities of Blum-Blum-Shub, self-shrinking, and de Bruijn sequences. A lower bound on the number of the binary sequences with LC2 〉 LCD is also presented.