The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first...Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.展开更多
The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multi...The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multiimaging mode, a multi-polarization phased array SAR antenna, and in internal calibration technology. The satellite technology adopted the principle of "Demand Pulls, Technology Pushes", creating a series of innovation firsts, reaching or surpassing the technical specifications of an international level.展开更多
A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons an...A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).展开更多
Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment mon...Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.展开更多
ZiYuan3-03(ZY3-03)satellite was launched on July 25,2020,equipped with China’s second-generation laser altimeter for earth observation.In order to preliminarily evaluate the in-orbit performance of the ZY3-03 laser a...ZiYuan3-03(ZY3-03)satellite was launched on July 25,2020,equipped with China’s second-generation laser altimeter for earth observation.In order to preliminarily evaluate the in-orbit performance of the ZY3-03 laser altimeter,the pointing bias calibration based on terrain matching method was adopted.Three tracks of laser data were employed for the ZY3-03 laser altimeter calibration test.Three groups of pointing parameters were obtained respectively,and the mean value of pointing is considered as the optimal calibration result.After calibration,ZY3-03 laser pointing accuracy is greatly improved by the method,and its pointing accuracy is approximately 12.7 arcsec.The first-track laser data on the Black Sea surface is used to evaluate the relative elevation accuracy of ZY3-03 laser altimeter after pointing bias calibration,which is improved from 0.33 m to 0.19 m after calibration.Meanwhile,the absolute elevation accuracy of ZY3-03 laser altimeter after pointing bias calibration is evaluated by the Ground Control Points(GCPs)measured by RTK(Real-Time Kinematic),which is better than 0.5 m in the flat terrain.展开更多
从受溴氨酸污染的泥土中分离出1株蒽醌染料中间体1-氨基蒽醌-2-磺酸(简称ASA-2)降解菌株GF3.经形态学观察和16S r DNA序列分析,鉴定该菌株为嗜吡啶红球菌.研究了该菌对ASA-2脱色的特性,并利用液相-质谱联用仪初步分析了ASA-2降解终产物...从受溴氨酸污染的泥土中分离出1株蒽醌染料中间体1-氨基蒽醌-2-磺酸(简称ASA-2)降解菌株GF3.经形态学观察和16S r DNA序列分析,鉴定该菌株为嗜吡啶红球菌.研究了该菌对ASA-2脱色的特性,并利用液相-质谱联用仪初步分析了ASA-2降解终产物.研究结果表明,外加蛋白胨、酵母膏和水解酪蛋白均能促进ASA-2的生物脱色,其中蛋白胨促进作用最为明显.进一步的研究发现多种氨基酸可加速ASA-2的生物脱色过程,其中L-亮氨酸促进效果最好.ASA-2脱色的最适环境条件为p H 8.0、30℃和150 r·min^(-1).最适条件下,菌株GF3可使108 mg·L-1的ASA-2在30 h内脱色率达95%以上,TOC去除率为62%.紫外-可见波谱显示,当ASA-2水溶液由红色褪成无色时,ASA-2的特征吸收峰完全消失,并在340 nm产生了新峰.进一步分析发现,ASA-2降解终产物质荷比为260,初步推测产物为3-氨基-4-磺酸基邻苯二甲酸.此外,菌株GF3还可以降解溴氨酸、蒽醌-2-磺酸钠和蒽醌-2-羧酸.展开更多
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金The National Key R&D Program of China under contract No.2016YFC1401007the National Natural Science Foundation of China under contract Nos 41406203 and 41621064the National High Resolution Project of China under contract No.41-Y20A14-9001-15/16
文摘Quantitative analysis and retrieval is given by the State Key Laboratory of Satellite Ocean Environment Dynamics(SOED),Second Institute of Oceanography(SIO),State Oceanic Administration(SOA),China,from the first batch of GF-3 synthetic aperture radar(SAR)data with ocean internal wave features in the Yellow Sea.
文摘The GF-3 satellite, the first C band and multi-polarization Synthetic Aperture Radar(SAR) satellite in China, achieved breakthroughs in a number of key technologies such as multi-polarization and the design of a multiimaging mode, a multi-polarization phased array SAR antenna, and in internal calibration technology. The satellite technology adopted the principle of "Demand Pulls, Technology Pushes", creating a series of innovation firsts, reaching or surpassing the technical specifications of an international level.
基金The National Key Research and Development Program of China under contract Nos 2016YFC1402704 and2016YFC1401007the International Science and Technology Cooperation Project of China under contract No.2011DFA22260
文摘A massive iceberg, named A-68 by National Ice Center (NIC) officially, calved away from the Larsen C Ice Shelf in Antarctica on luly 12, 2017. The iceberg A-68 is about 5 800 km2, weighs more than a trillion tons and it is one of the biggest ever recorded icebergs. Chinese satellites Gaofen-1 (GF-1) and Gaofen-3 (GF-3) data was used to monitoring the propagation of the rift and the iceberg by National Satellite Ocean Application Service (NSOAS).
基金The National Natural Science Foundation of China under contract No.41976169.
文摘Gaofen-3-02(GF3-02)is the first C-band synthetic aperture radar(SAR)satellite with terrain observation with progressive scans of SAR(TOPSAR)imaging mode in China,which plays an essential role in marine environment monitoring.Given the weak scattering characteristics of the ocean,the system thermal noise superimposed on SAR images has significant interference,especially in cross-polarization channels.Noise-Equivalent Sigma-Zero(NESZ)is a measure of the sensitivity of the radar to areas of low backscatter.The NESZ is defined to be the scattering cross-section coefficient of an area which contributes a mean level in the image equal to the signal-independent additive noise level.For TOPSAR,NESZ exhibits the shape of the SAR scanning gain curve in the azimuth and the shape of the antenna pattern in the range.Therefore,the accurate measurement of NESZ plays a vital role in the application of spaceborne SAR sea surface cross-polarization data.This paper proposes a theoretical calculation method for the NESZ curve in GF3-02 TOPSAR mode based on SAR noise inner calibration data and the imaging algorithm.A method for correcting the error existing in the theoretical curve of NESZ is also proposed according to the relationship between sea surface backscattering and wind speed and the same characteristics of target scattering in the overlapping area of adjacent sub-swaths.According to assessment with wide-swath TOPSAR cross-polarization data,the GF3-02 TOPSAR mode has a very low thermal noise level,which is better than−33 dB at the edge of each beam,and controlled below−38 dB at the center of the beam.The two-dimensional reference curves of the NESZ of each beam are provided to the GF3-02 TOPSAR users.After discussing the relationship between normalized radar cross section(NRCS)and wind speed,we provide a formula for NRCS related to wind speed and radar incidence angle.Compared with the NRCS derived from this formula and the NESZ-subtracted NRCS of SAR images,the bias is−0.0048 dB,the Root Mean Square Error is 1.671 dB and the correlation coefficient is 0.939.
基金Research and Development of Forest Resources Dynamic Monitoring and Forest Volume Estimation with LiDAR Data(No.2020YFE0200800)High Resolution Remote Sensing,Surveying and Mapping Application Program(No.42-Y30B04-9001-19/21)+4 种基金Active and Passive Composite Mapping and Application Technology with Visible,Infrared and Laser Sensors(No.D040106)Multi-beam Terrain Detection Laser and Its Application Technology(No.D040105)National Natural Science Foundation of China(Nos.41571440,41771360,41971426)Class B Project of Beijing Science and Technology Association Jinqiao Project Seed Fund(No.ZZ19013)Innovative Youth Talents Program,MNR(No.12110600000018003930)。
文摘ZiYuan3-03(ZY3-03)satellite was launched on July 25,2020,equipped with China’s second-generation laser altimeter for earth observation.In order to preliminarily evaluate the in-orbit performance of the ZY3-03 laser altimeter,the pointing bias calibration based on terrain matching method was adopted.Three tracks of laser data were employed for the ZY3-03 laser altimeter calibration test.Three groups of pointing parameters were obtained respectively,and the mean value of pointing is considered as the optimal calibration result.After calibration,ZY3-03 laser pointing accuracy is greatly improved by the method,and its pointing accuracy is approximately 12.7 arcsec.The first-track laser data on the Black Sea surface is used to evaluate the relative elevation accuracy of ZY3-03 laser altimeter after pointing bias calibration,which is improved from 0.33 m to 0.19 m after calibration.Meanwhile,the absolute elevation accuracy of ZY3-03 laser altimeter after pointing bias calibration is evaluated by the Ground Control Points(GCPs)measured by RTK(Real-Time Kinematic),which is better than 0.5 m in the flat terrain.
文摘从受溴氨酸污染的泥土中分离出1株蒽醌染料中间体1-氨基蒽醌-2-磺酸(简称ASA-2)降解菌株GF3.经形态学观察和16S r DNA序列分析,鉴定该菌株为嗜吡啶红球菌.研究了该菌对ASA-2脱色的特性,并利用液相-质谱联用仪初步分析了ASA-2降解终产物.研究结果表明,外加蛋白胨、酵母膏和水解酪蛋白均能促进ASA-2的生物脱色,其中蛋白胨促进作用最为明显.进一步的研究发现多种氨基酸可加速ASA-2的生物脱色过程,其中L-亮氨酸促进效果最好.ASA-2脱色的最适环境条件为p H 8.0、30℃和150 r·min^(-1).最适条件下,菌株GF3可使108 mg·L-1的ASA-2在30 h内脱色率达95%以上,TOC去除率为62%.紫外-可见波谱显示,当ASA-2水溶液由红色褪成无色时,ASA-2的特征吸收峰完全消失,并在340 nm产生了新峰.进一步分析发现,ASA-2降解终产物质荷比为260,初步推测产物为3-氨基-4-磺酸基邻苯二甲酸.此外,菌株GF3还可以降解溴氨酸、蒽醌-2-磺酸钠和蒽醌-2-羧酸.