Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific p...Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity(GCC), kinematic pair complexity(KPC), and type complexity(TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.展开更多
提出了一种基于GF集的机构末端运动特征分析方法,该方法简单直观.GF集是对机构末端的运动特征进行描述的集合.首先介绍了GF集的基本概念,其次提出了基于GF集的并联机构构型方法,介绍GF集的求交运算法则,而后给出了对机构末端运动特征进...提出了一种基于GF集的机构末端运动特征分析方法,该方法简单直观.GF集是对机构末端的运动特征进行描述的集合.首先介绍了GF集的基本概念,其次提出了基于GF集的并联机构构型方法,介绍GF集的求交运算法则,而后给出了对机构末端运动特征进行分析的步骤.最后,根据该方法分析了D e lta机构,得到了正确的结果.展开更多
The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative mot...The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative motion errors. The current research mainly focuses on improving assembly accuracy and control performance of serial segment erectors. An innovative design method is proposed featuring motion group-decoupling, based on which a new type of segment erector is developed and investigated. Firstly, the segment installation manipulation is analyzed and decomposed into three motion groups that are decoupled. Then the type synthesis for the 4-DOF motion group is performed based on the general function(GF) set theory and a new configuration of (1T?1R?1PS3UPS) is attained according to the segment manipulation requirements. Consequently, the kinematic models are built and the reducibility and accuracy are analyzed. The dexterity is verified though numerical simulation and no singular points appear in the workspace. Finally, a positioning experiment is carried out by using the prototype developed in the lab that demonstrates a 13.1% improvement of positioning accuracy and the feasibility of the new segment erector. The presented group-decoupling design method is able to invent new type of hybrid segment erectors that avoid the accumulative motion error of erecting.展开更多
Walking robots use leg structures to overcome obstacles or move on complicated terrains. Most robots of current researches are equipped with legs of simple structure. The specific design method of walking robot legs i...Walking robots use leg structures to overcome obstacles or move on complicated terrains. Most robots of current researches are equipped with legs of simple structure. The specific design method of walking robot legs is seldom studied. Based on the generalized-function(GF) set theory, a systematic type synthesis process of designing robot legs is introduced. The specific mobility of robot legs is analyzed to obtain two main leg types as the goal of design.Number synthesis problem is decomposed into two stages, actuation and constraint synthesis by name,corresponding to the combinatorics results of linear Diophantine equations. Additional restrictions are discussed to narrow the search range to propose practical limb expressions and kinematic-pair designs. Finally, all the fifty-one leg structures of four subtypes are carried out, some of which are chosen to make up robot prototypes, demonstrating the validity of the method. This paper proposed a novel type synthesis methodology, which could be used to systematically design various practical robot legs and the derived robots.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)National Natural Science Foundation of China(Grant Nos.51421092,51335007,51323005,51205248)+1 种基金Shanghai Municipal Natural Science Foundation,China(Grant No.12ZR1445200)Doctoral Program Foundation of Ministry of Education of China(Grant No.20120073120060)
文摘Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity(GCC), kinematic pair complexity(KPC), and type complexity(TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.
文摘提出了一种基于GF集的机构末端运动特征分析方法,该方法简单直观.GF集是对机构末端的运动特征进行描述的集合.首先介绍了GF集的基本概念,其次提出了基于GF集的并联机构构型方法,介绍GF集的求交运算法则,而后给出了对机构末端运动特征进行分析的步骤.最后,根据该方法分析了D e lta机构,得到了正确的结果.
基金supported by National Natural Science Foundation of China(Grant No. 51275284)Program for New Century Excellent Talents in University of China(Grant No. NCET-10-0567)the Research Fund of State Key Lab of Mechanical Systems and Vibration(Grant No.MSV-ZD-2010-02)
文摘The segment erector is a key part of the shield machines for tunnel engineering. The available segment erectors are all of serial configuration which is suffering from the problems of low rigidity and accumulative motion errors. The current research mainly focuses on improving assembly accuracy and control performance of serial segment erectors. An innovative design method is proposed featuring motion group-decoupling, based on which a new type of segment erector is developed and investigated. Firstly, the segment installation manipulation is analyzed and decomposed into three motion groups that are decoupled. Then the type synthesis for the 4-DOF motion group is performed based on the general function(GF) set theory and a new configuration of (1T?1R?1PS3UPS) is attained according to the segment manipulation requirements. Consequently, the kinematic models are built and the reducibility and accuracy are analyzed. The dexterity is verified though numerical simulation and no singular points appear in the workspace. Finally, a positioning experiment is carried out by using the prototype developed in the lab that demonstrates a 13.1% improvement of positioning accuracy and the feasibility of the new segment erector. The presented group-decoupling design method is able to invent new type of hybrid segment erectors that avoid the accumulative motion error of erecting.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1613208,51335007)National Basic Research Program of China(973 Program,Grant No.2013CB035501)+1 种基金Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51421092)Science and Technology Commission of Shanghai-based "Innovation Action Plan" Project(Grant No.16DZ1201001)
文摘Walking robots use leg structures to overcome obstacles or move on complicated terrains. Most robots of current researches are equipped with legs of simple structure. The specific design method of walking robot legs is seldom studied. Based on the generalized-function(GF) set theory, a systematic type synthesis process of designing robot legs is introduced. The specific mobility of robot legs is analyzed to obtain two main leg types as the goal of design.Number synthesis problem is decomposed into two stages, actuation and constraint synthesis by name,corresponding to the combinatorics results of linear Diophantine equations. Additional restrictions are discussed to narrow the search range to propose practical limb expressions and kinematic-pair designs. Finally, all the fifty-one leg structures of four subtypes are carried out, some of which are chosen to make up robot prototypes, demonstrating the validity of the method. This paper proposed a novel type synthesis methodology, which could be used to systematically design various practical robot legs and the derived robots.