The optimum amount of rare earth elements (RE) for treating glass fiber surface and its effect on the tensile properties of glass fiber reinforced polytetrafluoroethylene (GF/PTFE) composites were investigated. The te...The optimum amount of rare earth elements (RE) for treating glass fiber surface and its effect on the tensile properties of glass fiber reinforced polytetrafluoroethylene (GF/PTFE) composites were investigated. The tensile properties of GF/PTFE composites with different surface treatment conditions were measured. The fracture surface morphologies were observed and analyzed by SEM. The results indicate that rare earth elements can effectively promote the interfacial adhesion between the glass fiber and PTFE, owing to the effects of rare earth elements on the compatibility. The tensile properties of GF/PTFE composites can be improved considerably when the content of RE in surface modifier is 0.2%~0 4%, and the optimum performance of GF/PTFE composites is obtained at 0.3%RE content.展开更多
Rare earths were used to modify the surface of glass fiber in order to enhance the interfacial adhesion and improve the tribolngical properties of GF / PTFE composites . Three surface modifiers, a coupling agent, rar...Rare earths were used to modify the surface of glass fiber in order to enhance the interfacial adhesion and improve the tribolngical properties of GF / PTFE composites . Three surface modifiers, a coupling agent, rare earths, and a mixture of coupling agent and rare earths, were investigated. It is found that the tensile properties of rare earths modified GF / PTFE composites were improved considerably under the same experimental conditions. The PTFE composites, filled with rare earths modified glass fibers, exhibited the lowest friction coefficient and the highest wear resistance under both dry friction and oil-dropped lubrication conditions. In addition, rare earths modified GF/ PTFE composites showed the highest wear resistance under reciprocating impact load. The worn surfaces observation shows that rare earth elements modifier are superior to coupling agent modifier and the mixture of coupling agent and rare earths in promoting interfacial adhesion between the glass fiber and PTFE, accordingly improve tribological properties of GF / TFE composites due to their outstanding chemical activity.展开更多
文摘The optimum amount of rare earth elements (RE) for treating glass fiber surface and its effect on the tensile properties of glass fiber reinforced polytetrafluoroethylene (GF/PTFE) composites were investigated. The tensile properties of GF/PTFE composites with different surface treatment conditions were measured. The fracture surface morphologies were observed and analyzed by SEM. The results indicate that rare earth elements can effectively promote the interfacial adhesion between the glass fiber and PTFE, owing to the effects of rare earth elements on the compatibility. The tensile properties of GF/PTFE composites can be improved considerably when the content of RE in surface modifier is 0.2%~0 4%, and the optimum performance of GF/PTFE composites is obtained at 0.3%RE content.
文摘Rare earths were used to modify the surface of glass fiber in order to enhance the interfacial adhesion and improve the tribolngical properties of GF / PTFE composites . Three surface modifiers, a coupling agent, rare earths, and a mixture of coupling agent and rare earths, were investigated. It is found that the tensile properties of rare earths modified GF / PTFE composites were improved considerably under the same experimental conditions. The PTFE composites, filled with rare earths modified glass fibers, exhibited the lowest friction coefficient and the highest wear resistance under both dry friction and oil-dropped lubrication conditions. In addition, rare earths modified GF/ PTFE composites showed the highest wear resistance under reciprocating impact load. The worn surfaces observation shows that rare earth elements modifier are superior to coupling agent modifier and the mixture of coupling agent and rare earths in promoting interfacial adhesion between the glass fiber and PTFE, accordingly improve tribological properties of GF / TFE composites due to their outstanding chemical activity.