Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly ...Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.展开更多
Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent ...Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.展开更多
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f...This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
With the rapid development of 5G technology,it has become fast and easy for people to transmit information on the Internet.Digital images can express information more intuitively,so transmitting information through im...With the rapid development of 5G technology,it has become fast and easy for people to transmit information on the Internet.Digital images can express information more intuitively,so transmitting information through images has excellent applications.This paper uses a new chaotic system called 1D-Sin-Logistic-Map(1D-SLM).1D-SLM has two control parameters,which can provide larger parameter space,and the parameter space in the chaotic state is continuous.Through Lyapunov exponent analysis(LE),bifurcation diagrams analysis,spectral entropy analysis(SE),and 0-1 test,it is verified that 1D-SLM has complex dynamic behavior and is very suitable for cryptography.Compared with other 1D chaotic systems,the 1D-SLM has a larger Lyapunov exponent(LE)and spectral entropy(SE).For color image encryption algorithms,only relying on chaotic mapping is not enough to ensure security.So combined with 1D-SLM,we design a color image encryption algorithm,which is implemented by plane expansion,which reduces the correlation between the three channels of color images.The experimental results show that the proposed cross-plane color image encryption algorithm is safe and resistant to common attack methods.展开更多
In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a ...In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a multi-spectral wide-spectrum camera (WFV) carried by the GF-1 satellite as well as land use type and field survey data of Shandong Province, the planting area and distribution regions of winter wheat in Shandong Province (the main producing area of winter wheat in China) in 2016 were extracted by decision tree classification method and supervised classification- maximum likelihood classification method, and the accuracy of the classification results was verified based on ground survey data and data published by the statistics bureau. The results showed that the method of taking the GF-1/WFV images as the main source of data, introducing multi-source information into the decision tree and supervised classification models, and then calculating the planting area of winter wheat in the province was feasible. The total accuracy of remote sensing interpretation of winter wheat in Shandong Province in 2016 reached 92.1 %, and Kappa coefficient was 0.806. The planting area of winter wheat extracted based on the remote sensing images in the province was slightly smaller than the area pro-vided by the statistics department, and the extraction accuracy of the area was 93.0%. Research indicates that GF-1/WFV images have great po-tential for development and application in remote sensing monitoring of planting information of crops in a province.展开更多
The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the ba...The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the basis of GF-1 satellite multispectral image preprocessing, vegetation index was extracted by band math. The nitrogen sensitive vegetation index of apple canopy was selected by correlation analysis of nitrogen content in apple canopy. The best inversion model for the nitrogen content of apple canopy was selected by establishing the regression model of univariate and multivariate factors. The nitrogen content of the canopy of apple orchard in the study area was inverted in space. The results showed that the 6 vegetation indices of RVI, NDVI, EVI, VARI, NPCI and NRI were better correlated with nitrogen content in the vegetation index based on GF-1 satellite multispectral imaging. The best inversion model of nitrogen content in apple canopy layer is the multivariate stepwise regression (MSR) model: Nc = 35.74– 41.978^*NPCI-10.78^*NDVI. The R^2 and RMSE of the model was 0.69 and 1.07. The spatial inversion of nitrogen content in apple orchard canopy was obtained. This study provided theoretical basis and technical support for large-area rapid monitoring of regional fruit tree nutrients.展开更多
目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨...目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨、胫骨、髌骨关节软骨损伤程度并与关节镜结果对比,计算融合伪彩图诊断软骨损伤的特异性、敏感性及与关节镜诊断结果一致性。结果 T_1 images-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为92.8%、93.0%、0.769,T_2 star mapping-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为91.4%、94.2%、0.787。结论 T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨早期损伤评价上优于关节镜。展开更多
基金The National Key Research and Development Program of China under contract Nos 2016YFC1400901 and 2018YFC1406600the National Natural Science Foundation of China under contract No.40706057+1 种基金the Environmental Protection and Science and Technology Plan Project of Zhejiang Province of China under contract No.2013A021the Research Center for Air Pollution and Health of Zhejiang University
文摘Satellite remote sensing of inland water body requires a high spatial resolution and a multiband narrow spectral resolution, which makes the fusion between panchromatic(PAN) and multi-spectral(MS) images particularly important. Taking the Daquekou section of the Qiantang River as an observation target, four conventional fusion methods widely accepted in satellite image processing, including pan sharpening(PS), principal component analysis(PCA), Gram-Schmidt(GS), and wavelet fusion(WF), are utilized to fuse MS and PAN images of GF-1.The results of subjective and objective evaluation methods application indicate that GS performs the best,followed by the PCA, the WF and the PS in the order of descending. The existence of a large area of the water body is a dominant factor impacting the fusion performance. Meanwhile, the ability of retaining spatial and spectral informations is an important factor affecting the fusion performance of different fusion methods. The fundamental difference of reflectivity information acquisition between water and land is the reason for the failure of conventional fusion methods for land observation such as the PS to be used in the presence of the large water body. It is suggested that the adoption of the conventional fusion methods in the observing water body as the main target should be taken with caution. The performances of the fusion methods need re-assessment when the large-scale water body is present in the remote sensing image or when the research aims for the water body observation.
文摘Cancer poses a significant threat due to its aggressive nature,potential for widespread metastasis,and inherent heterogeneity,which often leads to resistance to chemotherapy.Lung cancer ranks among the most prevalent forms of cancer worldwide,affecting individuals of all genders.Timely and accurate lung cancer detection is critical for improving cancer patients’treatment outcomes and survival rates.Screening examinations for lung cancer detection,however,frequently fall short of detecting small polyps and cancers.To address these limitations,computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.This research implements an enhanced EfficientNetB1 deep learning model for accurate detection and classification using histopathological images.The proposed technique accurately classifies the histopathological images into three distinct classes:(1)no cancer(benign),(2)adenocarcinomas,and(3)squamous cell carcinomas.We evaluated the performance of the proposed technique using the histopathological(LC25000)lung dataset.The preprocessing steps,such as image resizing and augmentation,are followed by loading a pretrained model and applying transfer learning.The dataset is then split into training and validation sets,with fine-tuning and retraining performed on the training dataset.The model’s performance is evaluated on the validation dataset,and the results of lung cancer detection and classification into three classes are obtained.The study’s findings show that an enhanced model achieves exceptional classification accuracy of 99.8%.
文摘This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金This research was supported by the National Natural Science Foundation of China(61802212).
文摘With the rapid development of 5G technology,it has become fast and easy for people to transmit information on the Internet.Digital images can express information more intuitively,so transmitting information through images has excellent applications.This paper uses a new chaotic system called 1D-Sin-Logistic-Map(1D-SLM).1D-SLM has two control parameters,which can provide larger parameter space,and the parameter space in the chaotic state is continuous.Through Lyapunov exponent analysis(LE),bifurcation diagrams analysis,spectral entropy analysis(SE),and 0-1 test,it is verified that 1D-SLM has complex dynamic behavior and is very suitable for cryptography.Compared with other 1D chaotic systems,the 1D-SLM has a larger Lyapunov exponent(LE)and spectral entropy(SE).For color image encryption algorithms,only relying on chaotic mapping is not enough to ensure security.So combined with 1D-SLM,we design a color image encryption algorithm,which is implemented by plane expansion,which reduces the correlation between the three channels of color images.The experimental results show that the proposed cross-plane color image encryption algorithm is safe and resistant to common attack methods.
基金Supported by National Key R&D Program of China(2017YFD0301004)Natural Science Foundation of Shandong Province,China(ZR2016DP04)Key Project of Shandong Provincial Meteorological Bureau(2017sdqxz03)
文摘In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a multi-spectral wide-spectrum camera (WFV) carried by the GF-1 satellite as well as land use type and field survey data of Shandong Province, the planting area and distribution regions of winter wheat in Shandong Province (the main producing area of winter wheat in China) in 2016 were extracted by decision tree classification method and supervised classification- maximum likelihood classification method, and the accuracy of the classification results was verified based on ground survey data and data published by the statistics bureau. The results showed that the method of taking the GF-1/WFV images as the main source of data, introducing multi-source information into the decision tree and supervised classification models, and then calculating the planting area of winter wheat in the province was feasible. The total accuracy of remote sensing interpretation of winter wheat in Shandong Province in 2016 reached 92.1 %, and Kappa coefficient was 0.806. The planting area of winter wheat extracted based on the remote sensing images in the province was slightly smaller than the area pro-vided by the statistics department, and the extraction accuracy of the area was 93.0%. Research indicates that GF-1/WFV images have great po-tential for development and application in remote sensing monitoring of planting information of crops in a province.
基金the National Natural Science Foundation of China(41671346)National Key Research and Development Program of China (2017YFE0122500)+2 种基金the Taishan Scholar Assistance Program from Shandong Provincial GovernmentFunds of Shandong “Double Tops” Program(SYL2017XTTD02)Shandong major scientific and technological innovation project: Research demonstration and extension of orchard irrigation and fertilization in accurate management(2018CXGC0209).
文摘The apple orchard in Qixia City, Yantai City, Shandong Province was used as the research area. The nitrogen content inversion of apple canopy was studied by using the satellite remote sensing images of GF-1. On the basis of GF-1 satellite multispectral image preprocessing, vegetation index was extracted by band math. The nitrogen sensitive vegetation index of apple canopy was selected by correlation analysis of nitrogen content in apple canopy. The best inversion model for the nitrogen content of apple canopy was selected by establishing the regression model of univariate and multivariate factors. The nitrogen content of the canopy of apple orchard in the study area was inverted in space. The results showed that the 6 vegetation indices of RVI, NDVI, EVI, VARI, NPCI and NRI were better correlated with nitrogen content in the vegetation index based on GF-1 satellite multispectral imaging. The best inversion model of nitrogen content in apple canopy layer is the multivariate stepwise regression (MSR) model: Nc = 35.74– 41.978^*NPCI-10.78^*NDVI. The R^2 and RMSE of the model was 0.69 and 1.07. The spatial inversion of nitrogen content in apple orchard canopy was obtained. This study provided theoretical basis and technical support for large-area rapid monitoring of regional fruit tree nutrients.
文摘目的探讨T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨损伤中的诊断价值。方法对26例关节软骨损伤患者行T_2 star mapping、T_1 images和3D DESS扫描,并将T_1 images、T_2 star mapping与3D DESS图像融合,评价患者股骨、胫骨、髌骨关节软骨损伤程度并与关节镜结果对比,计算融合伪彩图诊断软骨损伤的特异性、敏感性及与关节镜诊断结果一致性。结果 T_1 images-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为92.8%、93.0%、0.769,T_2 star mapping-3D DESS融合伪彩图诊断关节软骨损伤的敏感度、特异度及Kappa值分别为91.4%、94.2%、0.787。结论 T_2 star mapping、T_1 images与3D DESS融合伪彩图在关节软骨早期损伤评价上优于关节镜。