以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,...以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,EVI)线性模型的估算结果进行对比,结合地面实测LAI数据分别对这2种模型估算结果进行精度评价。结果表明,采用EVI线性模型估算LAI,决定系数R 2为0.582,均方根误差(root mean square error,RMSE)为0.701;而采用SiB2模型估算LAI,R 2为0.798,RMSE为0.358,均比EVI线性模型有所改善。该研究发现,结合中高空间分辨率的GF-1 WFV数据,SiB2模型更适宜于该研究区森林植被的LAI反演。展开更多
归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF...归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。展开更多
In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a ...In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a multi-spectral wide-spectrum camera (WFV) carried by the GF-1 satellite as well as land use type and field survey data of Shandong Province, the planting area and distribution regions of winter wheat in Shandong Province (the main producing area of winter wheat in China) in 2016 were extracted by decision tree classification method and supervised classification- maximum likelihood classification method, and the accuracy of the classification results was verified based on ground survey data and data published by the statistics bureau. The results showed that the method of taking the GF-1/WFV images as the main source of data, introducing multi-source information into the decision tree and supervised classification models, and then calculating the planting area of winter wheat in the province was feasible. The total accuracy of remote sensing interpretation of winter wheat in Shandong Province in 2016 reached 92.1 %, and Kappa coefficient was 0.806. The planting area of winter wheat extracted based on the remote sensing images in the province was slightly smaller than the area pro-vided by the statistics department, and the extraction accuracy of the area was 93.0%. Research indicates that GF-1/WFV images have great po-tential for development and application in remote sensing monitoring of planting information of crops in a province.展开更多
文摘以国产高分一号(GF-1)宽幅数据(wide field of view,WFV)为数据源,采用简单生物圈模型2(simple biosphere model2,SiB2)对黑龙江省漠河县森林植被叶面积指数(leaf area index,LAI)进行估算,并与增强植被指数(enhanced vegetation index,EVI)线性模型的估算结果进行对比,结合地面实测LAI数据分别对这2种模型估算结果进行精度评价。结果表明,采用EVI线性模型估算LAI,决定系数R 2为0.582,均方根误差(root mean square error,RMSE)为0.701;而采用SiB2模型估算LAI,R 2为0.798,RMSE为0.358,均比EVI线性模型有所改善。该研究发现,结合中高空间分辨率的GF-1 WFV数据,SiB2模型更适宜于该研究区森林植被的LAI反演。
文摘归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。
基金Supported by National Key R&D Program of China(2017YFD0301004)Natural Science Foundation of Shandong Province,China(ZR2016DP04)Key Project of Shandong Provincial Meteorological Bureau(2017sdqxz03)
文摘In order to explore the adaptability of domestic high-resolution GF-1 satellite images in the extraction of planting information of crops especially in a province, based on the 16-meter remote sensing images of a multi-spectral wide-spectrum camera (WFV) carried by the GF-1 satellite as well as land use type and field survey data of Shandong Province, the planting area and distribution regions of winter wheat in Shandong Province (the main producing area of winter wheat in China) in 2016 were extracted by decision tree classification method and supervised classification- maximum likelihood classification method, and the accuracy of the classification results was verified based on ground survey data and data published by the statistics bureau. The results showed that the method of taking the GF-1/WFV images as the main source of data, introducing multi-source information into the decision tree and supervised classification models, and then calculating the planting area of winter wheat in the province was feasible. The total accuracy of remote sensing interpretation of winter wheat in Shandong Province in 2016 reached 92.1 %, and Kappa coefficient was 0.806. The planting area of winter wheat extracted based on the remote sensing images in the province was slightly smaller than the area pro-vided by the statistics department, and the extraction accuracy of the area was 93.0%. Research indicates that GF-1/WFV images have great po-tential for development and application in remote sensing monitoring of planting information of crops in a province.