High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection...High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.展开更多
A physical method,based on the simplification of surface radiation terms in remote sensing equations, has been suggested to retrieve the surface temperature,vertical temperature profile and surface emissivity from the...A physical method,based on the simplification of surface radiation terms in remote sensing equations, has been suggested to retrieve the surface temperature,vertical temperature profile and surface emissivity from the first eight channel observations of TIROS-N/HIRS2.Analyses of several examples indicate that this method can obtain much more accurate temperatures in the lower atmosphere than a statistical technique, and that the surface temperature and emissivity retrieved are also reasonable.展开更多
With the increasing impact of climate change,carbon emissions and removals have become major issues.Forests are major carbon pools,and forest fires are an essential part of the carbon cycle.This study introduces a mod...With the increasing impact of climate change,carbon emissions and removals have become major issues.Forests are major carbon pools,and forest fires are an essential part of the carbon cycle.This study introduces a model for estimating the detailed actual CO_(2)removal in burned forests using burn severity and tree survivability.Actual CO_(2)removal was estimated from empirical yield tables without using the standard carbon removal provided by the national inventory.The primary CO_(2)calculation method followed the guidelines of the International Panel on Climate Change.The burn severity was mapped using Sentinel-2 multispectral instrument data,and the survivability of each forest type was estimated according to burn severity.The survivability was applied to the pre-fire CO_(2)removal of each forest to estimate post-fire CO_(2)removal.In our case study,the burned forest area was 1,034 ha,and the CO_(2)removal before the fire was 8,615.3t/year.After the fire,removal decreased by 81.2%to 1,618.4 t/yr.In particular,the decrease in coniferous forests was high,more than 86%.The lack of survivability data on burned trees was a major limitation of our study.Systematically accumulating field monitoring data of post-fire forests will be necessary for future research and could serve as a reference for devising immediate countermeasures against forest fires.展开更多
SiB2(simple biosphere model Version 2)是用来模拟生态系统通量较为理想的国外模型,为了探讨其在我国黄河灌区的适用性及利用遥感数据驱动模型的可行性,并用其来研究该地区农田能量收支情况,以位山灌区为研究试点,利用位山实验站1a左...SiB2(simple biosphere model Version 2)是用来模拟生态系统通量较为理想的国外模型,为了探讨其在我国黄河灌区的适用性及利用遥感数据驱动模型的可行性,并用其来研究该地区农田能量收支情况,以位山灌区为研究试点,利用位山实验站1a左右的观测数据对模型进行了验证分析,模拟结果表明:SiB2模型能够较好地模拟位山试验站农田的能量通量、CO2通量及地表温度,净辐射、潜热通量、感热通量、CO2通量与地表温度的模拟值与观测值吻合较好,线性相关系数R分别为0.988,0.714,0.607,0.677与0.933,其中净辐射模拟效果最好,感热通量偏差较大。另外,利用遥感MODIS LAI数据驱动SiB2模型表明,除净辐射外,模拟效果很差,因此在站点尺度遥感LAI(叶面积指数,leaf area index)产品不适合驱动SiB2模型。展开更多
Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)t...Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.展开更多
基金supported by National Key Research and Development Program of China under grant number 2022YFB3903404National Natural Science Foundation of China under grant number 42325105,42071350LIESMARS Special Research Funding.
文摘High resolution satellite images are becoming increasingly available for urban multi-temporal semantic understanding.However,few datasets can be used for land-use/land-cover(LULC)classification,binary change detection(BCD)and semantic change detection(SCD)simultaneously because classification datasets always have one time phase and BCD datasets focus only on the changed location,ignoring the changed classes.Public SCD datasets are rare but much needed.To solve the above problems,a tri-temporal SCD dataset made up of Gaofen-2(GF-2)remote sensing imagery(with 11 LULC classes and 60 change directions)was built in this study,namely,the Wuhan Urban Semantic Understanding(WUSU)dataset.Popular deep learning based methods for LULC classification,BCD and SCD are tested to verify the reliability of WUSU.A Siamese-based multi-task joint framework with a multi-task joint loss(MJ loss)named ChangeMJ is proposed to restore the object boundaries and obtains the best results in LULC classification,BCD and SCD,compared to the state-of-the-art(SOTA)methods.Finally,a large spatial-scale mapping for Wuhan central urban area is carried out to verify that the WUsU dataset and the ChangeMJ framework have good application values.
文摘A physical method,based on the simplification of surface radiation terms in remote sensing equations, has been suggested to retrieve the surface temperature,vertical temperature profile and surface emissivity from the first eight channel observations of TIROS-N/HIRS2.Analyses of several examples indicate that this method can obtain much more accurate temperatures in the lower atmosphere than a statistical technique, and that the surface temperature and emissivity retrieved are also reasonable.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A03044326,2017R1D1A1B06036077)。
文摘With the increasing impact of climate change,carbon emissions and removals have become major issues.Forests are major carbon pools,and forest fires are an essential part of the carbon cycle.This study introduces a model for estimating the detailed actual CO_(2)removal in burned forests using burn severity and tree survivability.Actual CO_(2)removal was estimated from empirical yield tables without using the standard carbon removal provided by the national inventory.The primary CO_(2)calculation method followed the guidelines of the International Panel on Climate Change.The burn severity was mapped using Sentinel-2 multispectral instrument data,and the survivability of each forest type was estimated according to burn severity.The survivability was applied to the pre-fire CO_(2)removal of each forest to estimate post-fire CO_(2)removal.In our case study,the burned forest area was 1,034 ha,and the CO_(2)removal before the fire was 8,615.3t/year.After the fire,removal decreased by 81.2%to 1,618.4 t/yr.In particular,the decrease in coniferous forests was high,more than 86%.The lack of survivability data on burned trees was a major limitation of our study.Systematically accumulating field monitoring data of post-fire forests will be necessary for future research and could serve as a reference for devising immediate countermeasures against forest fires.
文摘SiB2(simple biosphere model Version 2)是用来模拟生态系统通量较为理想的国外模型,为了探讨其在我国黄河灌区的适用性及利用遥感数据驱动模型的可行性,并用其来研究该地区农田能量收支情况,以位山灌区为研究试点,利用位山实验站1a左右的观测数据对模型进行了验证分析,模拟结果表明:SiB2模型能够较好地模拟位山试验站农田的能量通量、CO2通量及地表温度,净辐射、潜热通量、感热通量、CO2通量与地表温度的模拟值与观测值吻合较好,线性相关系数R分别为0.988,0.714,0.607,0.677与0.933,其中净辐射模拟效果最好,感热通量偏差较大。另外,利用遥感MODIS LAI数据驱动SiB2模型表明,除净辐射外,模拟效果很差,因此在站点尺度遥感LAI(叶面积指数,leaf area index)产品不适合驱动SiB2模型。
基金the National Natural Science Foundation of China(Grant Nos.42025504,No.41905023)National Natural Science Youth Science Foundation(Grant No.41701406)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.:2021122).
文摘Cloud top pressure(CTP)is one of the critical cloud properties that significantly affects the radiative effect of clouds.Multi-angle polarized sensors can employ polarized bands(490 nm)or O_(2)A-bands(763 and 765 nm)to retrieve the CTP.However,the CTP retrieved by the two methods shows inconsistent results in certain cases,and large uncertainties in low and thin cloud retrievals,which may lead to challenges in subsequent applications.This study proposes a synergistic algorithm that considers both O_(2)A-bands and polarized bands using a random forest(RF)model.LiDAR CTP data are used as the true values and the polarized and non-polarized measurements are concatenated to train the RF model to determine CTP.Additionally,through analysis,we proposed that the polarized signal becomes saturated as the cloud optical thickness(COT)increases,necessitating a particular treatment for cases where COT<10 to improve the algorithm's stability.The synergistic method was then applied to the directional polarized camera(DPC)and Polarized and Directionality of the Earth’s Reflectance(POLDER)measurements for evaluation,and the resulting retrieval accuracy of the POLDER-based measurements(RMSEPOLDER=205.176 hPa,RMSEDPC=171.141 hPa,R^(2)POLDER=0.636,R^(2)DPC=0.663,respectively)were higher than that of the MODIS and POLDER Rayleigh pressure measurements.The synergistic algorithm also showed good performance with the application of DPC data.This algorithm is expected to provide data support for atmosphere-related fields as an atmospheric remote sensing algorithm within the Cloud Application for Remote Sensing,Atmospheric Radiation,and Updating Energy(CARE)platform.