The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete...The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio.展开更多
The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have b...The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads.However,the efect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modeing and oversimplification of the model.This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine the effectiveness of the adopted method.An effort has been made to examine the usage of FRP materials in column applications in exist-ing building regimes and highlights the possible future scopes to improve the use of FRP confined concrete in civil applications.展开更多
文摘The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio.
基金The research work presented in this paper is supported by the Foreign Young TalentsProject China(No.QN2021014006L)National Natural Science Foundation of China(Nos.51878354&51308301)+1 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)333 Talent High-Level Projects of Jiangsu Province and Qinglan Project of Jiangsu Higher EducationInstitutions.
文摘The use of fibre-reinforced polymer(FRP)to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure.Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads.However,the efect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modeing and oversimplification of the model.This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine the effectiveness of the adopted method.An effort has been made to examine the usage of FRP materials in column applications in exist-ing building regimes and highlights the possible future scopes to improve the use of FRP confined concrete in civil applications.