This paper presents the results of an experimental study on the thermal effects on glass fibre reinforced polymer (GFRP) bars embedded in concrete. The pullout test specimens were subjected to temperatures of 40℃,...This paper presents the results of an experimental study on the thermal effects on glass fibre reinforced polymer (GFRP) bars embedded in concrete. The pullout test specimens were subjected to temperatures of 40℃, 60℃ and 80℃ during a continuous four months-period of time. The results were compared to the reference specimens (room temperature). It was found that up to 60℃, the loss in bond strength due to the temperature is not significant, whereas for the 80℃-temperature a reduction of 14% in the bond strength is observed. Also, the bond-slip relationship was modelled using the CMR-model and new coefficients are proposed for the bond-slip behaviour of GFRP bars.展开更多
A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durabi...A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durability requirements. Though reinforced concrete has high strength and is most widely used construction material it suffers from disadvantages like corrosion of steel, susceptibility to chemical and environmental attack. In order to overcome the above deficiencies of reinforced concrete new materials (special concrete composites) have been developed over the past three decades. Glass Fibre Reinforced Polymer (GFRP) is one such material with wide range of applications. Based on the preliminary investigations on GFRP bars, an optimum fiber/resin ratio of 7:3 was arrived. The tensile strength of GFRP bars is comparable to that of the mild steel as per the tests carried out, but the modulus of elasticity is about 25-30 percentage of that of steel bars. This paper deals with the experimental investigations carried out on small slab panels supported on all four edges with effective spans of 0.9 m ~ 0.45 m, which is a part of large research problem undertaken with different ratios of 10ng span to short span with different support conditions. The test results are compared with similar slab panels reinforced with conventional mild steel bars.展开更多
文摘This paper presents the results of an experimental study on the thermal effects on glass fibre reinforced polymer (GFRP) bars embedded in concrete. The pullout test specimens were subjected to temperatures of 40℃, 60℃ and 80℃ during a continuous four months-period of time. The results were compared to the reference specimens (room temperature). It was found that up to 60℃, the loss in bond strength due to the temperature is not significant, whereas for the 80℃-temperature a reduction of 14% in the bond strength is observed. Also, the bond-slip relationship was modelled using the CMR-model and new coefficients are proposed for the bond-slip behaviour of GFRP bars.
文摘A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durability requirements. Though reinforced concrete has high strength and is most widely used construction material it suffers from disadvantages like corrosion of steel, susceptibility to chemical and environmental attack. In order to overcome the above deficiencies of reinforced concrete new materials (special concrete composites) have been developed over the past three decades. Glass Fibre Reinforced Polymer (GFRP) is one such material with wide range of applications. Based on the preliminary investigations on GFRP bars, an optimum fiber/resin ratio of 7:3 was arrived. The tensile strength of GFRP bars is comparable to that of the mild steel as per the tests carried out, but the modulus of elasticity is about 25-30 percentage of that of steel bars. This paper deals with the experimental investigations carried out on small slab panels supported on all four edges with effective spans of 0.9 m ~ 0.45 m, which is a part of large research problem undertaken with different ratios of 10ng span to short span with different support conditions. The test results are compared with similar slab panels reinforced with conventional mild steel bars.