The optical properties of α-BeH2 in an Orthorhombic crystal structure with the space group (Ibam) are investigated. We have calculated the optical properties including dielelectric function, refractive index and exti...The optical properties of α-BeH2 in an Orthorhombic crystal structure with the space group (Ibam) are investigated. We have calculated the optical properties including dielelectric function, refractive index and extinction coefficient, using density functional approach. A theoretical explanation of the relationship between the dielectric function and other optical constants has been provided. Furthermore, the real and imaginary components of the dielectric function have been examined. The effects of the exchange-correlation potentials (GGA and GGA + U) applied on this compound’s absorption peaks and edges have also been investigated. It was found that using the GGA + U approximation caused the conduction band to shift, which in turn caused the initial absorption peak to shift.展开更多
本文基于密度泛函理论(DFT)的GGA+U方法,应用Materials Studio 5.0软件包中的CASTEP程序模拟计算了Al掺杂锐钛矿型TiO2和N-Al共掺杂锐钛矿型TiO2的电子结构。计算结果表明:Al掺杂和N-Al共掺杂均能够降低TiO2的带隙值。Al掺杂是由于Al的3...本文基于密度泛函理论(DFT)的GGA+U方法,应用Materials Studio 5.0软件包中的CASTEP程序模拟计算了Al掺杂锐钛矿型TiO2和N-Al共掺杂锐钛矿型TiO2的电子结构。计算结果表明:Al掺杂和N-Al共掺杂均能够降低TiO2的带隙值。Al掺杂是由于Al的3s和3p态使导带底端下移而导致TiO2的带隙变窄;而N-Al共掺杂由于在体系中引入了N2p态,使导带底端向能量更低的方向移动,比Al单独掺杂时具有更低的带隙值。该研究结果很好地解释了Al掺杂以及N-Al共掺杂诱使TiO2的导带底端下移,禁带宽度减小,导致光谱响应范围红移的内在原因。展开更多
文摘The optical properties of α-BeH2 in an Orthorhombic crystal structure with the space group (Ibam) are investigated. We have calculated the optical properties including dielelectric function, refractive index and extinction coefficient, using density functional approach. A theoretical explanation of the relationship between the dielectric function and other optical constants has been provided. Furthermore, the real and imaginary components of the dielectric function have been examined. The effects of the exchange-correlation potentials (GGA and GGA + U) applied on this compound’s absorption peaks and edges have also been investigated. It was found that using the GGA + U approximation caused the conduction band to shift, which in turn caused the initial absorption peak to shift.
文摘本文基于密度泛函理论(DFT)的GGA+U方法,应用Materials Studio 5.0软件包中的CASTEP程序模拟计算了Al掺杂锐钛矿型TiO2和N-Al共掺杂锐钛矿型TiO2的电子结构。计算结果表明:Al掺杂和N-Al共掺杂均能够降低TiO2的带隙值。Al掺杂是由于Al的3s和3p态使导带底端下移而导致TiO2的带隙变窄;而N-Al共掺杂由于在体系中引入了N2p态,使导带底端向能量更低的方向移动,比Al单独掺杂时具有更低的带隙值。该研究结果很好地解释了Al掺杂以及N-Al共掺杂诱使TiO2的导带底端下移,禁带宽度减小,导致光谱响应范围红移的内在原因。