In order to improve the wear resistance and high-temperature oxidation resistance of superalloy GH202, the ultrafine-grain ceramic coating containing nano-size nickel particles was obtained by flow coat method on the ...In order to improve the wear resistance and high-temperature oxidation resistance of superalloy GH202, the ultrafine-grain ceramic coating containing nano-size nickel particles was obtained by flow coat method on the surface of GH202. The interface microstructure between ceramic coating and superalloy GH202 substrate during vacuum diffusion was studied. It is shown that Al2O3 oxide layer and (Ti, N) compound exist in the alloy substrate close to interface. During long time diffusion, nano-size nickel powders gradually congregate and grow up, and the confluent interface appears, which shows that the nano-size nickel powders have the effect of restraining the coating from failure.展开更多
基金Project supported by the Postdoctoral Science Foundation of Central South University, China
文摘In order to improve the wear resistance and high-temperature oxidation resistance of superalloy GH202, the ultrafine-grain ceramic coating containing nano-size nickel particles was obtained by flow coat method on the surface of GH202. The interface microstructure between ceramic coating and superalloy GH202 substrate during vacuum diffusion was studied. It is shown that Al2O3 oxide layer and (Ti, N) compound exist in the alloy substrate close to interface. During long time diffusion, nano-size nickel powders gradually congregate and grow up, and the confluent interface appears, which shows that the nano-size nickel powders have the effect of restraining the coating from failure.