The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region face...The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region faces a problem of paucity of data on treeline characteristics at the regional and landscape scales. Therefore,we used Remote Sensing(RS),and Geographic Information Science(GIS) approaches to investigate cross-scale interactions in the treeline ecotone. Additionally,European Space Agency land cover map,International Center for Integrated Mountain Development(ICIMOD) land cover map,ecological map of Nepal,and United States Geological Survey Shuttle Radar Topography Mission-Digital Elevation Model were used to analyze treeline pattern at the regional scale. Digital Globe high-resolution satellite imagery of Barun(eastern Nepal) and Manang(central Nepal) were used to study treeline patterns at the landscape scale. Treeline elevation ranges from 3300-4300 m above sea level. Abies spectabilis,Betula utilis,and Pinus wallichiana are the main treeline-forming species in the Nepal Himalaya. There is an east to west treeline elevationgradient at the regional scale. No slope exposure is observed at the regional scale; however,at the landscape scale,slope exposure is present only in a disturbed area(Manang). Topography and human disturbance are the main treeline controlling factor in Barun and Manang respectively.展开更多
It is well agreed that geologic risk occurs during hydrocarbon exploration because diverse uncertainties accompany the entire hydrocarbon system parameters such as the source rock,reservoir rock,trap and seal rock.In ...It is well agreed that geologic risk occurs during hydrocarbon exploration because diverse uncertainties accompany the entire hydrocarbon system parameters such as the source rock,reservoir rock,trap and seal rock.In order to overcome such attributes with uncertainties,a number of soft computing methods are used.Information granules could be provided by the Rough Fuzzy Set Granulation(RFSG)with a thorough quality evaluation.This is capable of attribute reduction that has been claimed to be essential in investigating the hydrocarbon systems.This paper is an endeavor to recommend a Geospatial Information System(GIS)-based model with the aim of categorizing the hydrocarbon structures map consistent with the uncertainty range concepts of geologic risk in the rough fuzzy sets and granular computing.The model used the RFSG for the attribute reduction by a Decision Logic language(DLlanguage).The RFSG was employed in order to classify hydrocarbon structures according to geological risk and extract the fuzzy rules with a predefined range of uncertainty.In order to assess the precisions of the fuzzy decisions on the hydrocarbon structure classification,the fuzzy entropy and fuzzy cross-entropy are applied.The proposed RFSG model applied for 62 structures as the training data,average fuzzy entropy has been calculated as 0.85,whereas the average fuzzy cross-entropy has been calculated 0.18.As it can be discerned,just seven structures had cross-entropies greater than 0.1,while three structures were larger than 0.3.It is implied that the precision of the proposed model is about 89%.The results yielded two reductions for the condition attributes and 11 fuzzy rules being filtered by the granular computing values.展开更多
The paper gives an overview of the current status of education in geoinformatics in China.First,the paper provides a brief introduction to the history of geoinformatics education in China and a general review of the s...The paper gives an overview of the current status of education in geoinformatics in China.First,the paper provides a brief introduction to the history of geoinformatics education in China and a general review of the scientific and technological development.It then presents how the development affects the education and training in China.In the paper,universities and institutes in China that can award academic degrees related to geoinformatics are summarized,and undergraduate majors are briefly introduced.Next,the paper reports the work having been done by the national expert group on Surveying and Mapping,including the revision of discipline catalog and guide for graduate education and requirements.A list of typical curricula in geoinformatics education is suggested.Activities on promoting the graduate student exchange platform are presented.Finally,a case study of geoinformatics education in Wuhan University is discussed.展开更多
文摘The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region faces a problem of paucity of data on treeline characteristics at the regional and landscape scales. Therefore,we used Remote Sensing(RS),and Geographic Information Science(GIS) approaches to investigate cross-scale interactions in the treeline ecotone. Additionally,European Space Agency land cover map,International Center for Integrated Mountain Development(ICIMOD) land cover map,ecological map of Nepal,and United States Geological Survey Shuttle Radar Topography Mission-Digital Elevation Model were used to analyze treeline pattern at the regional scale. Digital Globe high-resolution satellite imagery of Barun(eastern Nepal) and Manang(central Nepal) were used to study treeline patterns at the landscape scale. Treeline elevation ranges from 3300-4300 m above sea level. Abies spectabilis,Betula utilis,and Pinus wallichiana are the main treeline-forming species in the Nepal Himalaya. There is an east to west treeline elevationgradient at the regional scale. No slope exposure is observed at the regional scale; however,at the landscape scale,slope exposure is present only in a disturbed area(Manang). Topography and human disturbance are the main treeline controlling factor in Barun and Manang respectively.
文摘It is well agreed that geologic risk occurs during hydrocarbon exploration because diverse uncertainties accompany the entire hydrocarbon system parameters such as the source rock,reservoir rock,trap and seal rock.In order to overcome such attributes with uncertainties,a number of soft computing methods are used.Information granules could be provided by the Rough Fuzzy Set Granulation(RFSG)with a thorough quality evaluation.This is capable of attribute reduction that has been claimed to be essential in investigating the hydrocarbon systems.This paper is an endeavor to recommend a Geospatial Information System(GIS)-based model with the aim of categorizing the hydrocarbon structures map consistent with the uncertainty range concepts of geologic risk in the rough fuzzy sets and granular computing.The model used the RFSG for the attribute reduction by a Decision Logic language(DLlanguage).The RFSG was employed in order to classify hydrocarbon structures according to geological risk and extract the fuzzy rules with a predefined range of uncertainty.In order to assess the precisions of the fuzzy decisions on the hydrocarbon structure classification,the fuzzy entropy and fuzzy cross-entropy are applied.The proposed RFSG model applied for 62 structures as the training data,average fuzzy entropy has been calculated as 0.85,whereas the average fuzzy cross-entropy has been calculated 0.18.As it can be discerned,just seven structures had cross-entropies greater than 0.1,while three structures were larger than 0.3.It is implied that the precision of the proposed model is about 89%.The results yielded two reductions for the condition attributes and 11 fuzzy rules being filtered by the granular computing values.
基金The work is supported by the National Basic Research Program of China(973 Program)(grant number 2011CB707105)the National Natural Science Foundation of China(grant number 41271397)the Program for New Century Excellent Talents in University(grant number NCET-13-0435).
文摘The paper gives an overview of the current status of education in geoinformatics in China.First,the paper provides a brief introduction to the history of geoinformatics education in China and a general review of the scientific and technological development.It then presents how the development affects the education and training in China.In the paper,universities and institutes in China that can award academic degrees related to geoinformatics are summarized,and undergraduate majors are briefly introduced.Next,the paper reports the work having been done by the national expert group on Surveying and Mapping,including the revision of discipline catalog and guide for graduate education and requirements.A list of typical curricula in geoinformatics education is suggested.Activities on promoting the graduate student exchange platform are presented.Finally,a case study of geoinformatics education in Wuhan University is discussed.