<span style="font-family:Verdana;">Most GIS databases contain data errors. The quality of the data sources such as traditional paper maps or more recent remote sensing data determines spatial data qual...<span style="font-family:Verdana;">Most GIS databases contain data errors. The quality of the data sources such as traditional paper maps or more recent remote sensing data determines spatial data quality. In the past several decades, different statistical measures have been developed to evaluate data quality for different types of data, such as nominal categorical data, ordinal categorical data and numerical data. Although these methods were originally proposed for medical research or psychological research, they have been widely used to evaluate spatial data quality. In this paper, we first review statistical methods for evaluating data quality, discuss under what conditions we should use them and how to interpret the results, followed by a brief discussion of statistical software and packages that can be used to compute these data quality measures.</span>展开更多
Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Comm...Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.展开更多
文摘<span style="font-family:Verdana;">Most GIS databases contain data errors. The quality of the data sources such as traditional paper maps or more recent remote sensing data determines spatial data quality. In the past several decades, different statistical measures have been developed to evaluate data quality for different types of data, such as nominal categorical data, ordinal categorical data and numerical data. Although these methods were originally proposed for medical research or psychological research, they have been widely used to evaluate spatial data quality. In this paper, we first review statistical methods for evaluating data quality, discuss under what conditions we should use them and how to interpret the results, followed by a brief discussion of statistical software and packages that can be used to compute these data quality measures.</span>
基金provided by the U.S. Environmental Protection Agency (Subcontract Number OR13810-001.04 A10-0223-S001-A04)partly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (No. 2011A060901011)+1 种基金the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201308)the project of Atmospheric Haze Collaborative Control System Design (No. XDB05030400) from Chinese Academy of Sciences
文摘Due to the increasingly stringent standards, it is important to assess whether the proposed emission reduction will result in ambient concentrations that meet the standards. The Software for Model Attainment Test-Community Edition (SMAT-CE) is developed for demonstrating attainment of air quality standards of O3 and PM2.5. SMAT-CE improves computational efficiency and provides a number of advanced visualization and analytical functionalities on an integrated GIS platform. SMAT-CE incorporates historical measurements of air quality parameters and simulated air pollutant concentrations under a number of emission inventory scenarios to project the level of compliance to air quality standards in a targeted future year. An application case study of the software based on the U.S. National Ambient Air Quality Standards (NAAQS) shows that SMAT-CE is capable of demonstrating the air quality attainment of annual PM2.5 and 8-hour O3 for a proposed emission control policy.