Groundwater is considered as the main portion of the water supply in arid and semi-arid regions. The Sfax plain area is part of the arid/semi-arid areas of Tunisia that are subject to the impact of climatic and human ...Groundwater is considered as the main portion of the water supply in arid and semi-arid regions. The Sfax plain area is part of the arid/semi-arid areas of Tunisia that are subject to the impact of climatic and human pressures. Water scarcity in combination with groundwater exploitation is a major concern in this region. Therefore, sustainable management and protection of groundwater resources, it necessary. The delineation of groundwater potential (GP) zones becomes an increasingly important tool for implementing successful management programs. The purpose of the present paper is to assess the potential zone of groundwater resources in the study area. An efficient approach using geographical information system (GIS), hydrological modelling and analytical hierarchy process (AHP) was developed. At first, six groundwater parameters that affect groundwater occurrences are derived from the spatial geodatabase. Those parameters are: Infiltration rate estimated from a GIS linked model, lineament density, drainage density, slope, rainfall and Land use/land cover. Then, the assigned weights of thematic layers based on expert knowledge were normalized by eigenvector technique of AHP. The parameter layers were integrated and modeled using a weighted linear combination (WLC). The resulting map was classified into four categories: very low, low, good, and excellent. The results showed that about 26% of the study area falls under very-low-potential zone, with 30% on low-potential zone, 21% with good potential zone, and 23% falling under excellent zone. The results of the analysis were validated using pumping rate data and curve trend of sensitivity classes theory validation of outcomes indicated a good prediction accuracy. The results of the present study can serve to prepare a comprehensive groundwater development and management plans proving its efficacy in this art of exploratory investigations.展开更多
This study of the gneiss-fractured-rock aquifer in Yaoundé capital of Cameroon determines: the aquifer setting-flow systems, the aquifer type, seasonal variations in rock-water interactions, evolution of the hydr...This study of the gneiss-fractured-rock aquifer in Yaoundé capital of Cameroon determines: the aquifer setting-flow systems, the aquifer type, seasonal variations in rock-water interactions, evolution of the hydrogeochemical processes, physicochemical parameters and the suitability for domestic-agro-industrial use of the groundwater. Physicochemical field tests were carried out on 445 wells during four seasons for EC, pH, TDS, Temperature and static water level from July 2016 to May 2017. 90 well samples were analyzed 45 samples per season: wet/dry. 38 borewell logs were used together with structural data to determine the aquifer setting. The field physico-chemical and laboratory analysis data of well samples were mounted unto various GIS software platforms: Global mapper, AqQa, Aquachem, Rockworks, Logplot7, Surfer and ArcGIS, to get indices/parameters/figures, by use of Durov’s, Piper’s and Gibbs diagrams, Water quality index WQI, USSL ratio, Sodium Absorption ratio SAR, Percent sodium %Na, Kelly Ratio KR, Magnesium Absorption Ratio MAR, Total Hardness TH, Residual Sodium Carbonate RSC and Permeability Index PI that were determined. The process of groundwater ions acquisition is three-fold: by recharge through atmospheric precipitation, by ion exchange/simple dissolution between the rock-groundwater and by groundwater mixing in its flow path. Water types are Ca-HCO3, Mg-HCO3 and Mg-Cl while hydrogeochemical facies are Ca-Mg-HCO3 and Ca-Mg-Cl-SO4. Most water samples are fresh, potable and soft all seasons. The hydrogeological conceptual model is that of a three-layered single phreatic fractured-rock-aquifer while other researchers postulated a two-aquifer, phreatic and semi-confined, two-layered model.展开更多
The present study aims to develop a new hybrid Fuzzy Simulink model to assess the groundwater quality levels in Tiruchirappalli city, South India. Water quality management is an important issue in the modern times. Th...The present study aims to develop a new hybrid Fuzzy Simulink model to assess the groundwater quality levels in Tiruchirappalli city, South India. Water quality management is an important issue in the modern times. The data collected for Tiruchirappalli city have been utilized to develop the approach. This is illustrated with seventy nine groundwater samples collected from Tiruchirappalli city Corporation, South India. The characteristics of the groundwater for this plain were monitored during the years 2006 and 2008. The quality of groundwater at several established stations within the plain were assessed using Fuzzy Logic (FL) and GIS maps. The results of the calculated FL and GIS maps with the monitoring study have yielded good agreement. Groundwater quality for potability indicated high to moderate water pollution levels at Srirangam, Ariyamangalam, Golden Rock and K. Abisekapurm zones of the study area, depending on factors such as depth to groundwater, constituents of groundwater and vulnerability of groundwater to pollution. Fuzzy logic simulation approach has shown to be a practical, simple and useful tool to assess groundwater quality assessment for potability. This approach is capable of showing and updating the water quality assessment for drinking.展开更多
Groundwater is a finite resource which is being overexploited due to increase in demand over the years leading to decrease in its potentiality.As it is known that ground water is the only major source of drinking wate...Groundwater is a finite resource which is being overexploited due to increase in demand over the years leading to decrease in its potentiality.As it is known that ground water is the only major source of drinking water for both urban and rural India its proper management is very essential for its sustainability. In the present study,DRASTIC model is展开更多
There are many factors which affect the hydrological, geomorphologic and hydrogeological condition of the area. In order to better comprehend all processes, a Digital Elevation Model (DEM) was developed based on Geogr...There are many factors which affect the hydrological, geomorphologic and hydrogeological condition of the area. In order to better comprehend all processes, a Digital Elevation Model (DEM) was developed based on Geographical Information System. This latter appears as an essential tool to facilitate the decision support and can provide very important geological information. In fact, the use of the DEM is growing dramatically with the use of the GIS and the improvement of information extracted from elevation data such as mapping of floods, forest areas, erosion, and lineaments. The spatial distribution of topographic attributes can often be used as an indirect measure of the spatial variability of these processes and allows them to be mapped using relatively simple techniques. The main purpose of this study is to model the natural surface of the earth as the most accurate and the most precise. For this end we have tried in this work to develop various types of Digital Elevation Models DEM of the Foussana rift in Central Tunisia and to demonstrate the role of these models in geological, hydrogeological and hydrological study. The 3D model is also coupled in this study with piezometric and hydrochemistry study, so a new information’s plan was mapped by multiple GIS techniques like Spatial analysis and interpolation;in order 1) to comprehend the hydrodynamic of the aquifer, 2) to quantify surface and subsurface water resources and 3) to generate water management scenarios in the study area. To this end, several groundwater samples were collected and analyzed from wells and piezometers. Examining the corresponding physical and chemical parameters showed an increase in the concentrations of hydraulic conductivity in the center of the study area and it coincided with zones with high nutrient concentration. Recommendations are proposed in this zone.展开更多
文摘Groundwater is considered as the main portion of the water supply in arid and semi-arid regions. The Sfax plain area is part of the arid/semi-arid areas of Tunisia that are subject to the impact of climatic and human pressures. Water scarcity in combination with groundwater exploitation is a major concern in this region. Therefore, sustainable management and protection of groundwater resources, it necessary. The delineation of groundwater potential (GP) zones becomes an increasingly important tool for implementing successful management programs. The purpose of the present paper is to assess the potential zone of groundwater resources in the study area. An efficient approach using geographical information system (GIS), hydrological modelling and analytical hierarchy process (AHP) was developed. At first, six groundwater parameters that affect groundwater occurrences are derived from the spatial geodatabase. Those parameters are: Infiltration rate estimated from a GIS linked model, lineament density, drainage density, slope, rainfall and Land use/land cover. Then, the assigned weights of thematic layers based on expert knowledge were normalized by eigenvector technique of AHP. The parameter layers were integrated and modeled using a weighted linear combination (WLC). The resulting map was classified into four categories: very low, low, good, and excellent. The results showed that about 26% of the study area falls under very-low-potential zone, with 30% on low-potential zone, 21% with good potential zone, and 23% falling under excellent zone. The results of the analysis were validated using pumping rate data and curve trend of sensitivity classes theory validation of outcomes indicated a good prediction accuracy. The results of the present study can serve to prepare a comprehensive groundwater development and management plans proving its efficacy in this art of exploratory investigations.
文摘This study of the gneiss-fractured-rock aquifer in Yaoundé capital of Cameroon determines: the aquifer setting-flow systems, the aquifer type, seasonal variations in rock-water interactions, evolution of the hydrogeochemical processes, physicochemical parameters and the suitability for domestic-agro-industrial use of the groundwater. Physicochemical field tests were carried out on 445 wells during four seasons for EC, pH, TDS, Temperature and static water level from July 2016 to May 2017. 90 well samples were analyzed 45 samples per season: wet/dry. 38 borewell logs were used together with structural data to determine the aquifer setting. The field physico-chemical and laboratory analysis data of well samples were mounted unto various GIS software platforms: Global mapper, AqQa, Aquachem, Rockworks, Logplot7, Surfer and ArcGIS, to get indices/parameters/figures, by use of Durov’s, Piper’s and Gibbs diagrams, Water quality index WQI, USSL ratio, Sodium Absorption ratio SAR, Percent sodium %Na, Kelly Ratio KR, Magnesium Absorption Ratio MAR, Total Hardness TH, Residual Sodium Carbonate RSC and Permeability Index PI that were determined. The process of groundwater ions acquisition is three-fold: by recharge through atmospheric precipitation, by ion exchange/simple dissolution between the rock-groundwater and by groundwater mixing in its flow path. Water types are Ca-HCO3, Mg-HCO3 and Mg-Cl while hydrogeochemical facies are Ca-Mg-HCO3 and Ca-Mg-Cl-SO4. Most water samples are fresh, potable and soft all seasons. The hydrogeological conceptual model is that of a three-layered single phreatic fractured-rock-aquifer while other researchers postulated a two-aquifer, phreatic and semi-confined, two-layered model.
文摘The present study aims to develop a new hybrid Fuzzy Simulink model to assess the groundwater quality levels in Tiruchirappalli city, South India. Water quality management is an important issue in the modern times. The data collected for Tiruchirappalli city have been utilized to develop the approach. This is illustrated with seventy nine groundwater samples collected from Tiruchirappalli city Corporation, South India. The characteristics of the groundwater for this plain were monitored during the years 2006 and 2008. The quality of groundwater at several established stations within the plain were assessed using Fuzzy Logic (FL) and GIS maps. The results of the calculated FL and GIS maps with the monitoring study have yielded good agreement. Groundwater quality for potability indicated high to moderate water pollution levels at Srirangam, Ariyamangalam, Golden Rock and K. Abisekapurm zones of the study area, depending on factors such as depth to groundwater, constituents of groundwater and vulnerability of groundwater to pollution. Fuzzy logic simulation approach has shown to be a practical, simple and useful tool to assess groundwater quality assessment for potability. This approach is capable of showing and updating the water quality assessment for drinking.
文摘Groundwater is a finite resource which is being overexploited due to increase in demand over the years leading to decrease in its potentiality.As it is known that ground water is the only major source of drinking water for both urban and rural India its proper management is very essential for its sustainability. In the present study,DRASTIC model is
文摘There are many factors which affect the hydrological, geomorphologic and hydrogeological condition of the area. In order to better comprehend all processes, a Digital Elevation Model (DEM) was developed based on Geographical Information System. This latter appears as an essential tool to facilitate the decision support and can provide very important geological information. In fact, the use of the DEM is growing dramatically with the use of the GIS and the improvement of information extracted from elevation data such as mapping of floods, forest areas, erosion, and lineaments. The spatial distribution of topographic attributes can often be used as an indirect measure of the spatial variability of these processes and allows them to be mapped using relatively simple techniques. The main purpose of this study is to model the natural surface of the earth as the most accurate and the most precise. For this end we have tried in this work to develop various types of Digital Elevation Models DEM of the Foussana rift in Central Tunisia and to demonstrate the role of these models in geological, hydrogeological and hydrological study. The 3D model is also coupled in this study with piezometric and hydrochemistry study, so a new information’s plan was mapped by multiple GIS techniques like Spatial analysis and interpolation;in order 1) to comprehend the hydrodynamic of the aquifer, 2) to quantify surface and subsurface water resources and 3) to generate water management scenarios in the study area. To this end, several groundwater samples were collected and analyzed from wells and piezometers. Examining the corresponding physical and chemical parameters showed an increase in the concentrations of hydraulic conductivity in the center of the study area and it coincided with zones with high nutrient concentration. Recommendations are proposed in this zone.