According to the Fick's second law of diffusion, six analytical solutions of chloride profile in concrete were studied and discussed with regard to different boundary and initial conditions. In those analytical solut...According to the Fick's second law of diffusion, six analytical solutions of chloride profile in concrete were studied and discussed with regard to different boundary and initial conditions. In those analytical solutions, the most prevailing error-function solution which is based on semi-infinite assumption is the simple one, but may under-estimate the chloride content in concrete and over-rate the life time prediction of concrete structures. The experimental results show that compared with other solutions, the chloride content in concrete predicted by error-function model is the minimum, and the calculation difference produced by different analytical models should not be ignored. The influence of models on chloride content prediction is more than other environment and material coefficients in some time. In order to get a more realistic prediction model, modification to error-function model is suggested based on analysis and calculation examples concerning the boundary and edge effect.展开更多
Based on Remote Sensing (RS), Geographic Information System (GIS), and combining Principal Component Analysis, this paper designed a numerical integrated evaluation model for mountain eco-environment on the base ...Based on Remote Sensing (RS), Geographic Information System (GIS), and combining Principal Component Analysis, this paper designed a numerical integrated evaluation model for mountain eco-environment on the base of grid scale. Using this model, we evaluated the mountain eco-environmental quality in a case study area-the upper reaches of Minjiang River, and achieved a good result, which accorded well with the real condition. The study indicates that, the integrated evaluation model is suitable for multi-layer spatial factor computation, effectively lowing man's subjective influence in the evaluation process; treating the whole river basin as a system, the model shows full respect to the circulation of material and energy, synthetically embodies the determining impact of such natural condition as water-heat and landform, as well as human interference in natural eco-system; the evaluation result not only clearly presents mountainous vertical distribution features of input factors, but also provides a scientific and reliable thought for quantitatively evaluating mountain eco-environment.展开更多
Based on the biological resources surveys in China’s exclusive economic zone, the paper discusses the application of the GIS technology in evaluating the marine environmental quality, establishes the basic concept an...Based on the biological resources surveys in China’s exclusive economic zone, the paper discusses the application of the GIS technology in evaluating the marine environmental quality, establishes the basic concept and technological process for evaluating the environmental quality of the habitats of marine living resources, proposes the key points for the establishment of the relevant evaluation attributes database by applying the GIS technology and analyses several typical evaluation models and the data interpolation method for the model in GIS. Results show that the combination of the GIS technology with the quantitative evaluation model can be applied to the fast and accurate evaluation of the marine environmental quality.展开更多
The scope for environmental analysis constitutes a critical factor in recent times, yet demanding importance due to the concerns of environmental sustainability. The study aims at analysing the prospects of implementi...The scope for environmental analysis constitutes a critical factor in recent times, yet demanding importance due to the concerns of environmental sustainability. The study aims at analysing the prospects of implementing an integrated GIS and spatial configuration for environment analysis in Israel. The study adopts an empirical study design to consider the multi-dimensional utilisation of an integrated GIS and spatial configuration for environment analysis. The study considers the materials and methods of the GIS system modelling as well, consisting of satellite imagery, GPS-based location identification, Esri ArcGIS, CyberGIS, and BIM integration to present a comprehensive system for the environmental analysis of Israel. The results of the study indicate that the threats of natural disasters and climate change can be identified based on the synergy of spatial data within an integrated GIS modelling. In many cases, it is also used in collaboration with a BIM to ensure that planning and decision-making processes are sustainable, economically beneficial and environmentally considered. Thus, it is concluded that environmental analysis through the projection of visually represented satellite imagery within an integrated GIS with spatial configurations in Israel can minimise the conflicts between the infrastructural designs, human activities, and environmental sustainability.展开更多
In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential env...In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.展开更多
The biomass and distribution of black clam (Villorita cyprinoides) in Vembanad, a tropical estuary located along the southwest coast of India varied significantly. Sampling was done in freshwater-dominated zone in the...The biomass and distribution of black clam (Villorita cyprinoides) in Vembanad, a tropical estuary located along the southwest coast of India varied significantly. Sampling was done in freshwater-dominated zone in the south (distal) and brackish water zone in the north (proximal), during pre and post monsoon seasons. Clam biomass was estimated from samples, collected from different stations during the study period. Water transparency and temperature were measured at the sample sites. Water samples were collected and analysed for salinity, dissolved oxygen (DO), pH and hardness. There was a significant difference in the clam biomass during the two seasons in the distal zone, and those collected from the distal and proximal zones during pre-monsoon season. The data were further analysed to determine the factors affecting the clam biomass distribution in the two zones and seasons. Factor analyses, comparing the distal zone during two seasons and zonal variations were similar to earlier observations. Step wise regression analyses found that dissolved oxygen (adjusted R2 = 0.3) is the only variable affecting clam survival during pre-monsoon period in the distal and proximal zones. A geographic map of the region obtained from the Indian satellite sensor LISS (Linear Image Self Scanner) was used along with in situ data to map the results using inverse distance weightage model.展开更多
The aim of this research is to map the salt-affected soil in an arid environment using an advanced semi-empirical predictive model, Operational Land Imager (OLI) data, a digital elevation model (DEM), field soil sampl...The aim of this research is to map the salt-affected soil in an arid environment using an advanced semi-empirical predictive model, Operational Land Imager (OLI) data, a digital elevation model (DEM), field soil sampling, and laboratory and statistical analyses. To achieve our objectives, the OLI data were atmospherically corrected, radiometric sensor drift was calibrated, and distortions of topography and geometry were corrected using a DEM. Then, the soil salinity map was derived using a semi-empirical predictive model based on the Soil Salinity and Sodicity Index-2 (SSSI-2). The vegetation cover map was extracted from the Transformed Difference Vegetation Index (TDVI). In addition, accurate DEM of 5-m pixels was used to derive topographic attributes (elevation and slope). Visual comparisons and statistical validation of the semi-empirical model using ground truth were undertaken in order to test its capability in an arid environment for moderate and strong salinity mapping. To accomplish this step, fieldwork was organized and 120 soil samples were collected with various degrees of salinity, including non-saline soil samples. Each one was automatically labeled using a digital camera and an accurate global positioning system (GPS) survey (σ ≤ ± 30 cm) connected in real time to the geographic information system (GIS) database. Subsequently, in the laboratory, the major exchangeable cations (Ca2+, Mg2+, Na+, K+, Cl- and SO42-), pH and the electrical conductivity (EC-Lab) were extracted from a saturated soil paste, as well as the sodium adsorption ratio (SAR) being calculated. The EC-Lab, which is generally accepted as the most effective method for soil salinity quantification was used for statistical analysis and validation purposes. The obtained results demonstrated a very good conformity between the derived soil salinity map from OLI data and the ground truth, highlighting six major salinity classes: Extreme, very high, high, moderate, low and non-saline. The laboratory chemical analyses corroborate these results. Furthermore, the semi-empirical predictive model provides good global results in comparison to the ground truth and laboratory analysis (EC-Lab), with correlation coefficient (R2) of 0.97, an index of agreement (D) of 0.84 (p < 0.05), and low overall root mean square error (RMSE) of 11%. Moreover, we found that topographic attributes have a substantial impact on the spatial distribution of salinity. The areas at a relatively high altitude and with hard bedrock are less susceptible to salinity, while areas at a low altitude and slope (≤2%) composed of Quaternary soil are prone to it. In these low areas, the water table is very close to the surface (≤1 m), and the absence of an adequate drainage network contributes significantly to waterlogging. Consequently, the intrusion and emergence of seawater at the surface, coupled with high temperature and high evaporation rates, contribute extensively to the soil salinity in the study area.展开更多
基金Funded by the National Key Technology R&D Program(No.2011BAG07B04)
文摘According to the Fick's second law of diffusion, six analytical solutions of chloride profile in concrete were studied and discussed with regard to different boundary and initial conditions. In those analytical solutions, the most prevailing error-function solution which is based on semi-infinite assumption is the simple one, but may under-estimate the chloride content in concrete and over-rate the life time prediction of concrete structures. The experimental results show that compared with other solutions, the chloride content in concrete predicted by error-function model is the minimum, and the calculation difference produced by different analytical models should not be ignored. The influence of models on chloride content prediction is more than other environment and material coefficients in some time. In order to get a more realistic prediction model, modification to error-function model is suggested based on analysis and calculation examples concerning the boundary and edge effect.
文摘Based on Remote Sensing (RS), Geographic Information System (GIS), and combining Principal Component Analysis, this paper designed a numerical integrated evaluation model for mountain eco-environment on the base of grid scale. Using this model, we evaluated the mountain eco-environmental quality in a case study area-the upper reaches of Minjiang River, and achieved a good result, which accorded well with the real condition. The study indicates that, the integrated evaluation model is suitable for multi-layer spatial factor computation, effectively lowing man's subjective influence in the evaluation process; treating the whole river basin as a system, the model shows full respect to the circulation of material and energy, synthetically embodies the determining impact of such natural condition as water-heat and landform, as well as human interference in natural eco-system; the evaluation result not only clearly presents mountainous vertical distribution features of input factors, but also provides a scientific and reliable thought for quantitatively evaluating mountain eco-environment.
文摘Based on the biological resources surveys in China’s exclusive economic zone, the paper discusses the application of the GIS technology in evaluating the marine environmental quality, establishes the basic concept and technological process for evaluating the environmental quality of the habitats of marine living resources, proposes the key points for the establishment of the relevant evaluation attributes database by applying the GIS technology and analyses several typical evaluation models and the data interpolation method for the model in GIS. Results show that the combination of the GIS technology with the quantitative evaluation model can be applied to the fast and accurate evaluation of the marine environmental quality.
文摘The scope for environmental analysis constitutes a critical factor in recent times, yet demanding importance due to the concerns of environmental sustainability. The study aims at analysing the prospects of implementing an integrated GIS and spatial configuration for environment analysis in Israel. The study adopts an empirical study design to consider the multi-dimensional utilisation of an integrated GIS and spatial configuration for environment analysis. The study considers the materials and methods of the GIS system modelling as well, consisting of satellite imagery, GPS-based location identification, Esri ArcGIS, CyberGIS, and BIM integration to present a comprehensive system for the environmental analysis of Israel. The results of the study indicate that the threats of natural disasters and climate change can be identified based on the synergy of spatial data within an integrated GIS modelling. In many cases, it is also used in collaboration with a BIM to ensure that planning and decision-making processes are sustainable, economically beneficial and environmentally considered. Thus, it is concluded that environmental analysis through the projection of visually represented satellite imagery within an integrated GIS with spatial configurations in Israel can minimise the conflicts between the infrastructural designs, human activities, and environmental sustainability.
文摘In this research, the residential environment index system and evaluation model were established by means of subjective and objective methods. The methodology for establishing the evaluation system for residential environment was first analyzed; then the subjective evaluation data-base was established by questionnaire survey; and at the same time, the objective evaluation data-base was constructed by Geographic Information System (GIS); and then the related equation system between subjective and objective system was developed by multiple regression analysis. This research could benefit evaluation of the residential environment quality for various purposes, and also provide important rudimentary data-base for the development and improvement of residential environment for officials. Furthermore, the index system and evaluation model established in this research could construct a strong relation between subjective evaluation and objective data; and thus could provide a comprehensive, efficient and effective methodology for the evaluation of residential environment.
文摘The biomass and distribution of black clam (Villorita cyprinoides) in Vembanad, a tropical estuary located along the southwest coast of India varied significantly. Sampling was done in freshwater-dominated zone in the south (distal) and brackish water zone in the north (proximal), during pre and post monsoon seasons. Clam biomass was estimated from samples, collected from different stations during the study period. Water transparency and temperature were measured at the sample sites. Water samples were collected and analysed for salinity, dissolved oxygen (DO), pH and hardness. There was a significant difference in the clam biomass during the two seasons in the distal zone, and those collected from the distal and proximal zones during pre-monsoon season. The data were further analysed to determine the factors affecting the clam biomass distribution in the two zones and seasons. Factor analyses, comparing the distal zone during two seasons and zonal variations were similar to earlier observations. Step wise regression analyses found that dissolved oxygen (adjusted R2 = 0.3) is the only variable affecting clam survival during pre-monsoon period in the distal and proximal zones. A geographic map of the region obtained from the Indian satellite sensor LISS (Linear Image Self Scanner) was used along with in situ data to map the results using inverse distance weightage model.
文摘The aim of this research is to map the salt-affected soil in an arid environment using an advanced semi-empirical predictive model, Operational Land Imager (OLI) data, a digital elevation model (DEM), field soil sampling, and laboratory and statistical analyses. To achieve our objectives, the OLI data were atmospherically corrected, radiometric sensor drift was calibrated, and distortions of topography and geometry were corrected using a DEM. Then, the soil salinity map was derived using a semi-empirical predictive model based on the Soil Salinity and Sodicity Index-2 (SSSI-2). The vegetation cover map was extracted from the Transformed Difference Vegetation Index (TDVI). In addition, accurate DEM of 5-m pixels was used to derive topographic attributes (elevation and slope). Visual comparisons and statistical validation of the semi-empirical model using ground truth were undertaken in order to test its capability in an arid environment for moderate and strong salinity mapping. To accomplish this step, fieldwork was organized and 120 soil samples were collected with various degrees of salinity, including non-saline soil samples. Each one was automatically labeled using a digital camera and an accurate global positioning system (GPS) survey (σ ≤ ± 30 cm) connected in real time to the geographic information system (GIS) database. Subsequently, in the laboratory, the major exchangeable cations (Ca2+, Mg2+, Na+, K+, Cl- and SO42-), pH and the electrical conductivity (EC-Lab) were extracted from a saturated soil paste, as well as the sodium adsorption ratio (SAR) being calculated. The EC-Lab, which is generally accepted as the most effective method for soil salinity quantification was used for statistical analysis and validation purposes. The obtained results demonstrated a very good conformity between the derived soil salinity map from OLI data and the ground truth, highlighting six major salinity classes: Extreme, very high, high, moderate, low and non-saline. The laboratory chemical analyses corroborate these results. Furthermore, the semi-empirical predictive model provides good global results in comparison to the ground truth and laboratory analysis (EC-Lab), with correlation coefficient (R2) of 0.97, an index of agreement (D) of 0.84 (p < 0.05), and low overall root mean square error (RMSE) of 11%. Moreover, we found that topographic attributes have a substantial impact on the spatial distribution of salinity. The areas at a relatively high altitude and with hard bedrock are less susceptible to salinity, while areas at a low altitude and slope (≤2%) composed of Quaternary soil are prone to it. In these low areas, the water table is very close to the surface (≤1 m), and the absence of an adequate drainage network contributes significantly to waterlogging. Consequently, the intrusion and emergence of seawater at the surface, coupled with high temperature and high evaporation rates, contribute extensively to the soil salinity in the study area.