边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个...边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个固有缺陷:1)当预测框与真值框不相交时IoU为常量0,无法梯度下降更新边界框的参数;2)在IoU取得最优值时其梯度不存在,边界框很难收敛到IoU最优处.揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系,指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况,这增加了边界框尺寸回归的不确定性.从优化两个统计分布之间散度的视角看待边界框回归问题,提出了光滑IoU(Smooth-IoU,SIoU)损失,即构造了在全局上光滑(即连续可微)且极值唯一的损失函数,该损失函数自然蕴含边界框各参数之间特定的最优关系,其唯一取极值的边界框可使IoU达到最优.光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处,而极值唯一确保了在全局上可梯度下降更新参数,从而避开了IoU损失的固有缺陷.提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归,在LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果,验证了光滑IoU损失的易用性和有效性.展开更多
文摘边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个固有缺陷:1)当预测框与真值框不相交时IoU为常量0,无法梯度下降更新边界框的参数;2)在IoU取得最优值时其梯度不存在,边界框很难收敛到IoU最优处.揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系,指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况,这增加了边界框尺寸回归的不确定性.从优化两个统计分布之间散度的视角看待边界框回归问题,提出了光滑IoU(Smooth-IoU,SIoU)损失,即构造了在全局上光滑(即连续可微)且极值唯一的损失函数,该损失函数自然蕴含边界框各参数之间特定的最优关系,其唯一取极值的边界框可使IoU达到最优.光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处,而极值唯一确保了在全局上可梯度下降更新参数,从而避开了IoU损失的固有缺陷.提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归,在LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果,验证了光滑IoU损失的易用性和有效性.