Geographic information science(GIScience)and remote sensing have long provided essential data and method-ological support for natural resource challenges and environmental problems research.With increasing advances in...Geographic information science(GIScience)and remote sensing have long provided essential data and method-ological support for natural resource challenges and environmental problems research.With increasing advances in information technology,natural resource and environmental science research faces the dual challenges of data and computational intensiveness.Therefore,the role of remote sensing and GIScience in the fields of natural resources and environmental science in this new information era is a key concern of researchers.This study clarifies the definition and frameworks of these two disciplines and discusses their role in natural resource and environmental research.GIScience is the discipline that studies the abstract and formal expressions of the basic concepts and laws of geography,and its research framework mainly consists of geo-modeling,geo-analysis,and geo-computation.Remote sensing is a comprehensive technology that deals with the mechanisms of human ef-fects on the natural ecological environment system by observing the earth surface system.Its main areas include sensors and platforms,information processing and interpretation,and natural resource and environmental appli-cations.GIScience and remote sensing provide data and methodological support for resource and environmental science research.They play essential roles in promoting the development of resource and environmental science and other related technologies.This paper provides forecasts of ten future directions for GIScience and eight future directions for remote sensing,which aim to solve issues related to natural resources and the environment.展开更多
Due to the importance of development and its impact on our life, in this paper we are going to elaborate on the Sustainable Development and its related issues. In the following, due to the essential role that GIScienc...Due to the importance of development and its impact on our life, in this paper we are going to elaborate on the Sustainable Development and its related issues. In the following, due to the essential role that GIScience can play on the success trend of Sustainable Development, GIScience will be defined and its importance will be discussed as an effective tool in its logical procedure of Sustainable Development. The decision making support systems—using Geo-information and spatial data—is merging increasingly into other disciplines design and techniques day by day. So It would be worth investigation on the technical aspects of sustainable development and its consideration in projects development in general, throughout the literature review and SD requirements. The successful sustained achievement will depend on clear “political” answerability for its reliability and local regulatory environment. It should be in harmony with the additional superior prescription and ruling at the national or international levels by the use and utilization of national spatial data infrastructure. The paper will ends up with a set of suggested practices in the development of Spatial Data Infrastructure (SDI).展开更多
A geospatial cyberinfrastructure is needed to support advanced GIScience research and education activities.However,the heterogeneous and distributed nature of geospatial resources creates enormous obstacles for buildi...A geospatial cyberinfrastructure is needed to support advanced GIScience research and education activities.However,the heterogeneous and distributed nature of geospatial resources creates enormous obstacles for building a unified and interoperable geospatial cyberinfrastructure.In this paper,we propose the Geospatial Service Web(GSW)to underpin the development of a future geospatial cyberinfrastructure.The GSW excels over the traditional spatial data infrastructure by providing a highly intelligent geospatial middleware to integrate various geospatial resources through the Internet based on interoperable Web service technologies.The development of the GSW focuses on the establishment of a platform where data,information,and knowledge can be shared and exchanged in an interoperable manner.Theoretically,we describe the conceptual framework and research challenges for GSW,and then introduce our recent research toward building a GSW.A research agenda for building a GSW is also presented in the paper.展开更多
Increasing data resources are available for documenting and detecting changes in environmental,ecological,and socioeconomic processes.Currently,data are distributed across a wide variety of sources(e.g.data silos)and ...Increasing data resources are available for documenting and detecting changes in environmental,ecological,and socioeconomic processes.Currently,data are distributed across a wide variety of sources(e.g.data silos)and published in a variety of formats,scales,and semantic representations.A key issue,therefore,in building systems that can realize a vision of earth system monitoring remains data integration.Discrete global grid systems(DGGSs)have emerged as a key technology that can provide a common multi-resolution spatial fabric in support of Digital Earth monitoring.However,DGGSs remain in their infancy with many technical,conceptual,and operational challenges.With renewed interest in DGGS brought on by a recently proposed standard,the demands of big data,and growing needs for monitoring environmental changes across a variety of scales,we seek to highlight current challenges that we see as central to moving the field(s)and technologies of DGGS forward.For each of the identified challenges,we illustrate the issue and provide a potential solution using a reference DGGS implementation.Through articulation of these challenges,we hope to identify a clear research agenda,expand the DGGS research footprint,and provide some ideas for moving forward towards a scaleable Digital Earth vision.Addressing such challenges helps the GIScience research community to achieve the real benefits of DGGS and provides DGGS an opportunity to play a role in the next generation of GIS.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.L1924041,41525004)the Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2019DXC006).
文摘Geographic information science(GIScience)and remote sensing have long provided essential data and method-ological support for natural resource challenges and environmental problems research.With increasing advances in information technology,natural resource and environmental science research faces the dual challenges of data and computational intensiveness.Therefore,the role of remote sensing and GIScience in the fields of natural resources and environmental science in this new information era is a key concern of researchers.This study clarifies the definition and frameworks of these two disciplines and discusses their role in natural resource and environmental research.GIScience is the discipline that studies the abstract and formal expressions of the basic concepts and laws of geography,and its research framework mainly consists of geo-modeling,geo-analysis,and geo-computation.Remote sensing is a comprehensive technology that deals with the mechanisms of human ef-fects on the natural ecological environment system by observing the earth surface system.Its main areas include sensors and platforms,information processing and interpretation,and natural resource and environmental appli-cations.GIScience and remote sensing provide data and methodological support for resource and environmental science research.They play essential roles in promoting the development of resource and environmental science and other related technologies.This paper provides forecasts of ten future directions for GIScience and eight future directions for remote sensing,which aim to solve issues related to natural resources and the environment.
文摘Due to the importance of development and its impact on our life, in this paper we are going to elaborate on the Sustainable Development and its related issues. In the following, due to the essential role that GIScience can play on the success trend of Sustainable Development, GIScience will be defined and its importance will be discussed as an effective tool in its logical procedure of Sustainable Development. The decision making support systems—using Geo-information and spatial data—is merging increasingly into other disciplines design and techniques day by day. So It would be worth investigation on the technical aspects of sustainable development and its consideration in projects development in general, throughout the literature review and SD requirements. The successful sustained achievement will depend on clear “political” answerability for its reliability and local regulatory environment. It should be in harmony with the additional superior prescription and ruling at the national or international levels by the use and utilization of national spatial data infrastructure. The paper will ends up with a set of suggested practices in the development of Spatial Data Infrastructure (SDI).
基金This work is jointly supported by National Basic Research Program of China(Nos.2012CB719906 and 2011CB707105)National Natural Science Foundation of China(Nos.41023001,40801153 and 40901190).
文摘A geospatial cyberinfrastructure is needed to support advanced GIScience research and education activities.However,the heterogeneous and distributed nature of geospatial resources creates enormous obstacles for building a unified and interoperable geospatial cyberinfrastructure.In this paper,we propose the Geospatial Service Web(GSW)to underpin the development of a future geospatial cyberinfrastructure.The GSW excels over the traditional spatial data infrastructure by providing a highly intelligent geospatial middleware to integrate various geospatial resources through the Internet based on interoperable Web service technologies.The development of the GSW focuses on the establishment of a platform where data,information,and knowledge can be shared and exchanged in an interoperable manner.Theoretically,we describe the conceptual framework and research challenges for GSW,and then introduce our recent research toward building a GSW.A research agenda for building a GSW is also presented in the paper.
文摘Increasing data resources are available for documenting and detecting changes in environmental,ecological,and socioeconomic processes.Currently,data are distributed across a wide variety of sources(e.g.data silos)and published in a variety of formats,scales,and semantic representations.A key issue,therefore,in building systems that can realize a vision of earth system monitoring remains data integration.Discrete global grid systems(DGGSs)have emerged as a key technology that can provide a common multi-resolution spatial fabric in support of Digital Earth monitoring.However,DGGSs remain in their infancy with many technical,conceptual,and operational challenges.With renewed interest in DGGS brought on by a recently proposed standard,the demands of big data,and growing needs for monitoring environmental changes across a variety of scales,we seek to highlight current challenges that we see as central to moving the field(s)and technologies of DGGS forward.For each of the identified challenges,we illustrate the issue and provide a potential solution using a reference DGGS implementation.Through articulation of these challenges,we hope to identify a clear research agenda,expand the DGGS research footprint,and provide some ideas for moving forward towards a scaleable Digital Earth vision.Addressing such challenges helps the GIScience research community to achieve the real benefits of DGGS and provides DGGS an opportunity to play a role in the next generation of GIS.