期刊文献+
共找到1,042篇文章
< 1 2 53 >
每页显示 20 50 100
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks
1
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
下载PDF
Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image
2
作者 Yiwei Chen Yi He +3 位作者 Hong Ye Lina Xing Xin Zhang Guohua Shi 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期105-113,共9页
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im... The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error. 展开更多
关键词 Fundus fluorescein angiography image fundus structure image image translation unified deep learning model generative adversarial networks
下载PDF
Advances in Deep-Learning-based Precipitation Nowcasting Techniques
3
作者 ZHENG Qun LIU Qi +1 位作者 LAO Ping LU Zhen-ci 《Journal of Tropical Meteorology》 SCIE 2024年第3期337-350,共14页
Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than... Precipitation nowcasting,as a crucial component of weather forecasting,focuses on predicting very short-range precipitation,typically within six hours.This approach relies heavily on real-time observations rather than numerical weather models.The core concept involves the spatio-temporal extrapolation of current precipitation fields derived from ground radar echoes and/or satellite images,which was generally actualized by employing computer image or vision techniques.Recently,with stirring breakthroughs in artificial intelligence(AI)techniques,deep learning(DL)methods have been used as the basis for developing novel approaches to precipitation nowcasting.Notable progress has been obtained in recent years,manifesting the strong potential of DL-based nowcasting models for their advantages in both prediction accuracy and computational cost.This paper provides an overview of these precipitation nowcasting approaches,from which two stages along the advancing in this field emerge.Classic models that were established on an elementary neural network dominated in the first stage,while large meteorological models that were based on complex network architectures prevailed in the second.In particular,the nowcasting accuracy of such data-driven models has been greatly increased by imposing suitable physical constraints.The integration of AI models and physical models seems to be a promising way to improve precipitation nowcasting techniques further. 展开更多
关键词 precipitation nowcasting deep learning neural network classic model large model
下载PDF
Deep Learning-Based Fault Prediction for Electrical Equipment
4
作者 Fuyang Miao 《计算机科学与技术汇刊(中英文版)》 2024年第2期16-22,共7页
With the rapid advancement of deep learning and the increasing availability of large-scale data,fault prediction for electrical equipment has become a vital area of research.This paper explores the application of deep... With the rapid advancement of deep learning and the increasing availability of large-scale data,fault prediction for electrical equipment has become a vital area of research.This paper explores the application of deep learning techniques in predicting faults within electrical systems,focusing on the challenges and methodologies that can enhance prediction accuracy and system reliability.Traditional fault prediction methods,such as threshold-based models and statistical approaches,often fall short in handling complex,nonlinear data and large-scale systems.In contrast,deep learning models,particularly Convolutional Neural Networks(CNNs)and Recurrent Neural Networks(RNNs),have shown significant promise in learning from large and diverse datasets to detect subtle patterns that indicate potential failures.This paper also discusses the importance of data collection and preprocessing,model training,evaluation metrics,and cross-validation techniques,all of which contribute to improving the robustness and accuracy of fault prediction models.Despite the advancements,challenges remain,such as data quality,model interpretability,and computational efficiency.The paper concludes by outlining future research directions and the potential impact of emerging technologies like the Internet of Things(IoT)and edge computing in the field of fault prediction. 展开更多
关键词 deep learning Fault Prediction Electrical Equipment Convolutional Neural networks Recurrent Neural networks Data Preprocessing model Evaluation
下载PDF
Recent Progresses in Deep Learning Based Acoustic Models 被引量:9
5
作者 Dong Yu Jinyu Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期396-409,共14页
In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) a... In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) and convolutional neural networks(CNNs) that can effectively exploit variablelength contextual information,and their various combination with other models.We then describe models that are optimized end-to-end and emphasize on feature representations learned jointly with the rest of the system,the connectionist temporal classification(CTC) criterion,and the attention-based sequenceto-sequence translation model.We further illustrate robustness issues in speech recognition systems,and discuss acoustic model adaptation,speech enhancement and separation,and robust training strategies.We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research. 展开更多
关键词 Attention model convolutional neural network(CNN) connectionist temporal classification(CTC) deep learning(DL) long short-term memory(LSTM) permutation invariant training speech adaptation speech processing speech recognition speech separation
下载PDF
Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs 被引量:2
6
作者 Jing-Jing Liu Jian-Chao Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期350-363,共14页
The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience ... The lithofacies classification is essential for oil and gas reservoir exploration and development.The traditional method of lithofacies classification is based on"core calibration logging"and the experience of geologists.This approach has strong subjectivity,low efficiency,and high uncertainty.This uncertainty may be one of the key factors affecting the results of 3 D modeling of tight sandstone reservoirs.In recent years,deep learning,which is a cutting-edge artificial intelligence technology,has attracted attention from various fields.However,the study of deep-learning techniques in the field of lithofacies classification has not been sufficient.Therefore,this paper proposes a novel hybrid deep-learning model based on the efficient data feature-extraction ability of convolutional neural networks(CNN)and the excellent ability to describe time-dependent features of long short-term memory networks(LSTM)to conduct lithological facies-classification experiments.The results of a series of experiments show that the hybrid CNN-LSTM model had an average accuracy of 87.3%and the best classification effect compared to the CNN,LSTM or the three commonly used machine learning models(Support vector machine,random forest,and gradient boosting decision tree).In addition,the borderline synthetic minority oversampling technique(BSMOTE)is introduced to address the class-imbalance issue of raw data.The results show that processed data balance can significantly improve the accuracy of lithofacies classification.Beside that,based on the fine lithofacies constraints,the sequential indicator simulation method is used to establish a three-dimensional lithofacies model,which completes the fine description of the spatial distribution of tight sandstone reservoirs in the study area.According to this comprehensive analysis,the proposed CNN-LSTM model,which eliminates class imbalance,can be effectively applied to lithofacies classification,and is expected to improve the reality of the geological model for the tight sandstone reservoirs. 展开更多
关键词 deep learning Convolutional neural networks LSTM Lithological-facies classification 3D modeling Class imbalance
下载PDF
Automatic Image Annotation Using Adaptive Convolutional Deep Learning Model 被引量:1
7
作者 R.Jayaraj S.Lokesh 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期481-497,共17页
Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of ... Every day,websites and personal archives create more and more photos.The size of these archives is immeasurable.The comfort of use of these huge digital image gatherings donates to their admiration.However,not all of these folders deliver relevant indexing information.From the outcomes,it is dif-ficult to discover data that the user can be absorbed in.Therefore,in order to determine the significance of the data,it is important to identify the contents in an informative manner.Image annotation can be one of the greatest problematic domains in multimedia research and computer vision.Hence,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image annotation.Initially,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class map.The pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are labelled.The proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_Measure.With the assistance of the pro-posed methodology,the unlabeled images are labelled. 展开更多
关键词 deep learning model J-image segmentation honey badger algorithm convolutional neural network image annotation
下载PDF
Deep Learning-Based Surrogate Model for Flight Load Analysis
8
作者 Haiquan Li Qinghui Zhang Xiaoqian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期605-621,共17页
Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We ... Flight load computations(FLC)are generally expensive and time-consuming.This paper studies deep learning(DL)-based surrogate models of FLC to provide a reliable basis for the strength design of aircraft structures.We mainly analyze the influence of Mach number,overload,angle of attack,elevator deflection,altitude,and other factors on the loads of key monitoring components,based on which input and output variables are set.The data used to train and validate the DL surrogate models are derived using aircraft flight load simulation results based on wind tunnel test data.According to the FLC features,a deep neural network(DNN)and a random forest(RF)are proposed to establish the surrogate models.The DNN meets the FLC accuracy requirement using rich data sources in the FLC;the RF can alleviate overfitting and evaluate the importance of flight parameters.Numerical experiments show that both the DNN-and RF-based surrogate models achieve high accuracy.The input variables importance analysis demonstrates that vertical overload and elevator deflection have a significant influence on the FLC.We believe that synthetic applications of these DL-based surrogate methods show a great promise in the field of FLC. 展开更多
关键词 Flight load surrogate model deep learning deep neural network random forest
下载PDF
A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network
9
作者 Kyungsuk Jang Gun Jin Yun 《Computers, Materials & Continua》 SCIE EI 2021年第2期1091-1120,共30页
This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c... This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively. 展开更多
关键词 Data-driven modeling deep learning neural networks genetic programming anisotropic failure criterion
下载PDF
Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks:Climatology,Interannual Variability,and Extremes 被引量:2
10
作者 Ya WANG Gang HUANG +6 位作者 Baoxiang PAN Pengfei LIN Niklas BOERS Weichen TAO Yutong CHEN BO LIU Haijie LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1299-1312,共14页
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth... Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes. 展开更多
关键词 generative adversarial networks model bias deep learning El Niño-Southern Oscillation marine heatwaves
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
11
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
12
作者 Zichen Jin Qing He +1 位作者 Yang Liu Kaige Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期53-65,共13页
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo... Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels. 展开更多
关键词 deep learning super-resolution imaging generalized model framework generation adversarial networks image reconstruction.
下载PDF
An Image Classification Method Based on Deep Neural Network with Energy Model 被引量:2
13
作者 Yang Yang Jinbao Duan +2 位作者 Haitao Yu Zhipeng Gao Xuesong Qiu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第12期555-575,共21页
The development of deep learning has revolutionized image recognition technology.How to design faster and more accurate image classification algorithms has become our research interests.In this paper,we propose a new ... The development of deep learning has revolutionized image recognition technology.How to design faster and more accurate image classification algorithms has become our research interests.In this paper,we propose a new algorithm called stochastic depth networks with deep energy model(SADIE),and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics.First,the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training.Then in the backpropagation process,the energy function is designed to optimize the target loss function of the neural network.We also explored the possibility of using Adam and SGD combination optimization in deep neural networks.Finally,we use training data to train our network based on deep energy model and testing data to verify the performance of the model.The results we finally obtained in this research include the Classified labels of images.The impacts of our obtained results show that our model has high accuracy and performance. 展开更多
关键词 IMAGE classification deep energy model deep NEURAL network STOCHASTIC DEPTH deep learning.
下载PDF
Deep Learning-Based Cancer Detection-Recent Developments,Trend and Challenges 被引量:2
14
作者 Gulshan Kumar Hamed Alqahtani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1271-1307,共37页
Cancer is one of the most critical diseases that has caused several deaths in today’s world.In most cases,doctors and practitioners are only able to diagnose cancer in its later stages.In the later stages,planning ca... Cancer is one of the most critical diseases that has caused several deaths in today’s world.In most cases,doctors and practitioners are only able to diagnose cancer in its later stages.In the later stages,planning cancer treatment and increasing the patient’s survival rate becomes a very challenging task.Therefore,it becomes the need of the hour to detect cancer in the early stages for appropriate treatment and surgery planning.Analysis and interpretation of medical images such as MRI and CT scans help doctors and practitioners diagnose many diseases,including cancer disease.However,manual interpretation of medical images is costly,time-consuming and biased.Nowadays,deep learning,a subset of artificial intelligence,is gaining increasing attention from practitioners in automatically analysing and interpreting medical images without their intervention.Deep learning methods have reported extraordinary results in different fields due to their ability to automatically extract intrinsic features from images without any dependence on manually extracted features.This study provides a comprehensive review of deep learning methods in cancer detection and diagnosis,mainly focusing on breast cancer,brain cancer,skin cancer,and prostate cancer.This study describes various deep learningmodels and steps for applying deep learningmodels in detecting cancer.Recent developments in cancer detection based on deep learning methods have been critically analysed and summarised to identify critical challenges in applying them for detecting cancer accurately in the early stages.Based on the identified challenges,we provide a few promising future research directions for fellow researchers in the field.The outcome of this study provides many clues for developing practical and accurate cancer detection systems for its early diagnosis and treatment planning. 展开更多
关键词 Autoencoders(AEs) cancer detection convolutional neural networks(CNNs) deep learning generative adversarial models(GANs) machine learning
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
15
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 deep learning Convolutional Neural networks (CNN) Seismic Fault Identification U-Net 3D model Geological Exploration
下载PDF
Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System 被引量:1
16
作者 Ala Saleh Alluhaidan Masoud Alajmi +3 位作者 Fahd N.Al-Wesabi Anwer Mustafa Hilal Manar Ahmed Hamza Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2022年第8期2713-2727,共15页
Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from seve... Human fall detection(FD)acts as an important part in creating sensor based alarm system,enabling physical therapists to minimize the effect of fall events and save human lives.Generally,elderly people suffer from several diseases,and fall action is a common situation which can occur at any time.In this view,this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection(IAOA-DLFD)model to identify the fall/non-fall events.The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality.Besides,the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors.In addition,the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters.Lastly,radial basis function(RBF)network is applied for determining the proper class labels of the test images.To showcase the enhanced performance of the IAOA-DLFD technique,a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997. 展开更多
关键词 Fall detection intelligent model deep learning archimedes optimization algorithm capsule network
下载PDF
Tongue image segmentation and tongue color classification based on deep learning 被引量:5
17
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
Risk pre-assessment method for regional drilling engineering based on deep learning and multi-source data
18
作者 Yu-Qiang Xu Kuan Liu +6 位作者 Bao-Lun He Tatiana Pinyaeva Bing-Shuo Li Yu-Cong Wang Jia-Jun Nie Lei Yang Fu-Xiang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3654-3672,共19页
Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a... Accurately predicting downhole risk before drilling in new exploration areas is one of the difficulties.Using intelligent algorithms to explore the complex relationship between multi-source data and downhole risk is a hot research topic and frontier in this field.However,due to the small number and uneven distribution of drilled wells in new exploration areas and the lack of sample data related to risk,the training model has insufficient generalization ability,and thus the prediction is not effective.In this paper,a drilling risk profile(depth domain)rich in geological and engineering information is constructed by introducing a quantitative evaluation method for drilling risk of drilled wells,which can provide sufficient risk sample data for model training and thus solve the small sample problem.For the problem of uneven distribution of drilling wells in new exploration areas,the concept of virtual wells and their deployment methods were proposed.Besides,two methods for calculating rock mechanical parameters of virtual wells were proposed,and the accuracy and applicability of the two methods are analyzed.The LSTM deep learning model was optimized to tap the quantitative relationship between drilling risk profiles and multi-source data(e.g.,seismic,logging,and rock mechanical parameters).The model was validated to have an average relative error of 9.19%.The quantitative prediction of the drilling risk profile of the virtual well was achieved using the trained LSTM model and the calculation of the relevant parameters of the virtual well.Finally,based on the sequential Gaussian simulation method and the risk distribution of drilled and virtual wells,a regional 3D drilling risk model was constructed.The analysis of real cases shows that the addition of virtual wells can significantly improve the identification of regional drilling risks and the prediction accuracy of pre-drill drilling risks in unexplored areas can be improved by up to 21%compared with the 3D risk model constructed based on drilled wells only. 展开更多
关键词 Pre-drill risk assessment Risk samples deep learning LSTM neural network 3D model
下载PDF
Modelling a Fused Deep Network Model for Pneumonia Prediction
19
作者 M.A.Ramitha N.Mohanasundaram R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2725-2739,共15页
Deep Learning(DL)is known for its golden standard computing paradigm in the learning community.However,it turns out to be an extensively utilized computing approach in the ML field.Therefore,attaining superior outcome... Deep Learning(DL)is known for its golden standard computing paradigm in the learning community.However,it turns out to be an extensively utilized computing approach in the ML field.Therefore,attaining superior outcomes over cognitive tasks based on human performance.The primary benefit of DL is its competency in learning massive data.The DL-based technologies have grown faster and are widely adopted to handle the conventional approaches resourcefully.Specifically,various DL approaches outperform the conventional ML approaches in real-time applications.Indeed,various research works are reviewed to understand the significance of the individual DL models and some computational complexity is observed.This may be due to the broader expertise and knowledge required for handling these models during the prediction process.This research proposes a holistic approach for pneumonia prediction and offers a more appropriate DL model for classification purposes.This work incorporates a novel fused Squeeze and Excitation(SE)block with the ResNet model for pneumonia prediction and better accuracy.The expected model reduces the human effort during the prediction process and makes it easier to diagnose it intelligently as the feature learning is adaptive.The experimentation is carried out in Keras,and the model’s superiority is compared with various advanced approaches.The proposed model gives 90%prediction accuracy,93%precision,90%recall and 89%F1-measure.The proposed model shows a better trade-off compared to other approaches.The evaluation is done with the existing standard ResNet model,GoogleNet+ResNet+DenseNet,and different variants of ResNet models. 展开更多
关键词 Disease prediction PNEUMONIA deep learning SE ResNet fused network model
下载PDF
MDEV Model:A Novel Ensemble-Based Transfer Learning Approach for Pneumonia Classification Using CXR Images
20
作者 Mehwish Shaikh Isma Farah Siddiqui +3 位作者 Qasim Arain Jahwan Koo Mukhtiar Ali Unar Nawab Muhammad Faseeh Qureshi 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期287-302,共16页
Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful;thus,catching it early is crucial.Medical physicians’time is limited in outdoor situations due to many pati... Pneumonia is a dangerous respiratory disease due to which breathing becomes incredibly difficult and painful;thus,catching it early is crucial.Medical physicians’time is limited in outdoor situations due to many patients;therefore,automated systems can be a rescue.The input images from the X-ray equipment are also highly unpredictable due to variances in radiologists’experience.Therefore,radiologists require an automated system that can swiftly and accurately detect pneumonic lungs from chest x-rays.In medical classifications,deep convolution neural networks are commonly used.This research aims to use deep pretrained transfer learning models to accurately categorize CXR images into binary classes,i.e.,Normal and Pneumonia.The MDEV is a proposed novel ensemble approach that concatenates four heterogeneous transfer learning models:Mobile-Net,DenseNet-201,EfficientNet-B0,and VGG-16,which have been finetuned and trained on 5,856 CXR images.The evaluation matrices used in this research to contrast different deep transfer learning architectures include precision,accuracy,recall,AUC-roc,and f1-score.The model effectively decreases training loss while increasing accuracy.The findings conclude that the proposed MDEV model outperformed cutting-edge deep transfer learning models and obtains an overall precision of 92.26%,an accuracy of 92.15%,a recall of 90.90%,an auc-roc score of 90.9%,and f-score of 91.49%with minimal data pre-processing,data augmentation,finetuning and hyperparameter adjustment in classifying Normal and Pneumonia chests. 展开更多
关键词 deep transfer learning convolution neural network image processing computer vision ensemble learning pneumonia classification MDEV model
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部