期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GLMB滤波和Gibbs采样的多扩展目标有限混合建模与跟踪算法 被引量:5
1
作者 陈一梅 刘伟峰 +1 位作者 孔明鑫 张桂林 《自动化学报》 EI CSCD 北大核心 2020年第7期1445-1456,共12页
本文针对杂波条件下多扩展目标的状态估计,目标个数估计,扩展目标形状估计问题,提出了一种基于标签随机有限集(Labelled random finite sets,L-RFS)框架下多扩展目标跟踪学习算法,该学习算法主要包括两方面:多扩展目标动态建模和多扩展... 本文针对杂波条件下多扩展目标的状态估计,目标个数估计,扩展目标形状估计问题,提出了一种基于标签随机有限集(Labelled random finite sets,L-RFS)框架下多扩展目标跟踪学习算法,该学习算法主要包括两方面:多扩展目标动态建模和多扩展目标的跟踪估计.首先,结合广义标签多伯努利滤波器(Generalized labelled multi-Bernoulli,GLMB)建立了扩展目标的量测有限混合模型(Finite mixture models,FMM),利用Gibbs采样和贝叶斯信息准则(Bayesian information criterion,BIC)准则推导出有限混合模型的参数来对多扩展目标形状进行学习,然后采用等效量测方法来替代扩展目标产生的量测,对扩展目标形状采用椭圆逼近建模,实现扩展目标形状与状态的估计.仿真实验表明本文所给的方法能够有效跟踪多扩展目标,并且在目标个数估计方面优于CBMeMBer算法.此外,与标签多伯努利滤波(LMB)计算比较表明:GLMB和LMB算法滤波估计精度接近,二者精度高于CBMeMBer算法. 展开更多
关键词 多扩展目标 有限混合模型 标签随机有限集 glmb滤波器 GIBBS采样 BIC准则
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部