Contemporary references to global warming pertain to the dramatic increase in monthly global land surface temperature (GLST) anomalies since 1976. In this paper, we argue that recent global warming is primarily a resu...Contemporary references to global warming pertain to the dramatic increase in monthly global land surface temperature (GLST) anomalies since 1976. In this paper, we argue that recent global warming is primarily a result of natural causes;we have established three steps that support this viewpoint. The first is to identify periodic functions that perfectly match all of the monthly anomaly data for GLST;the second is to identify monthly sea surface temperature (SST) anomalies that are located within different ocean basin domains and highly correlated with the monthly GLST anomalies;and the third is to determine whether the dramatically increasing (or dramatically decreasing) K-line diagram signals that coincide with GLST anomalies occurred in El Niño years (or La Niña years). We have identified 15,295 periodic functions that perfectly fit the monthly GLST anomalies from 1880 to 2013 and show that the monthly SST anomalies in six domains in different oceans are highly correlated with the monthly GLST anomalies. In addition, most of the annual dramatically increasing GLST anomalies occur in El Niño years;and most of the annual dramatically decreasing GLST anomalies occur in La Niña years. These findings indicate that the “ocean stabilization machine” might represent a primary factor underlying the effect of “global warming on climate change”.展开更多
In this paper we have investigated the performance of downlink generalized distributed antenna system (GDAS). Under the assumption of spatial correlated fading conditions, we have derived the numeric expression of c...In this paper we have investigated the performance of downlink generalized distributed antenna system (GDAS). Under the assumption of spatial correlated fading conditions, we have derived the numeric expression of correlated coefficients according to series of Bessel function, and have lifted the range restriction of the mean angle of incident. Moreover, the architecture of distributed generalized layered space time codes (GLST) has been considered in order to achieve both multiplexing gain and diversity gain while we have used basis vector from null space instead of orthogonal set to obtain the same system performance but with lower complexity. Furthermore, in order to maximize the capacity, Gerschgorin circles based fast antenna selection algorithms have been evaluated including a discussion of those simulation results.展开更多
文摘Contemporary references to global warming pertain to the dramatic increase in monthly global land surface temperature (GLST) anomalies since 1976. In this paper, we argue that recent global warming is primarily a result of natural causes;we have established three steps that support this viewpoint. The first is to identify periodic functions that perfectly match all of the monthly anomaly data for GLST;the second is to identify monthly sea surface temperature (SST) anomalies that are located within different ocean basin domains and highly correlated with the monthly GLST anomalies;and the third is to determine whether the dramatically increasing (or dramatically decreasing) K-line diagram signals that coincide with GLST anomalies occurred in El Niño years (or La Niña years). We have identified 15,295 periodic functions that perfectly fit the monthly GLST anomalies from 1880 to 2013 and show that the monthly SST anomalies in six domains in different oceans are highly correlated with the monthly GLST anomalies. In addition, most of the annual dramatically increasing GLST anomalies occur in El Niño years;and most of the annual dramatically decreasing GLST anomalies occur in La Niña years. These findings indicate that the “ocean stabilization machine” might represent a primary factor underlying the effect of “global warming on climate change”.
基金Supported by the Hi-Tech Research and Development Program of China (2009AA011502)China Important National Science &Technology Specific Projects (2009ZX03007-003-01)the National Natural Science Foundation of China (60772113)
文摘In this paper we have investigated the performance of downlink generalized distributed antenna system (GDAS). Under the assumption of spatial correlated fading conditions, we have derived the numeric expression of correlated coefficients according to series of Bessel function, and have lifted the range restriction of the mean angle of incident. Moreover, the architecture of distributed generalized layered space time codes (GLST) has been considered in order to achieve both multiplexing gain and diversity gain while we have used basis vector from null space instead of orthogonal set to obtain the same system performance but with lower complexity. Furthermore, in order to maximize the capacity, Gerschgorin circles based fast antenna selection algorithms have been evaluated including a discussion of those simulation results.