期刊文献+
共找到5,170篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进RBF神经网络的永磁同步电机弱磁控制
1
作者 于丰铭 刘军 《组合机床与自动化加工技术》 北大核心 2025年第1期99-103,共5页
针对永磁同步电机在传统单电流调节器弱磁控制下,电机控制模式切换时导致的系统稳定性差,以及传统RBF-PID控制器输出权值的非精细化更新导致的参数过拟合,收敛速度慢等问题,提出一种过渡区域切换算法,引入混合权重因子,采用余弦插值与Si... 针对永磁同步电机在传统单电流调节器弱磁控制下,电机控制模式切换时导致的系统稳定性差,以及传统RBF-PID控制器输出权值的非精细化更新导致的参数过拟合,收敛速度慢等问题,提出一种过渡区域切换算法,引入混合权重因子,采用余弦插值与Sigmoid函数做过渡区域的平滑处理,并在弱磁区引入模糊PI控制器,将自适应梯度下降法与L2正则化策略结合,改进神经网络的输出权值。仿真结果表明,设计的过渡区域切换算法,不依赖电机参数,可移植性强,优化了恒转矩区切换至弱磁区的条件,在改进RBF-PID控制器下,转速超调量仅为0.07%,负载调节时间较之传统策略减少了94%。 展开更多
关键词 永磁同步电机 弱磁控制 过渡区域切换算法 rbf神经网络 模糊控制
下载PDF
基于RBF神经网络的船舶主机滑模控制算法仿真
2
作者 朱思远 熊源 《船电技术》 2025年第1期12-17,共6页
本文以某型柴油机为研究对象,使用MATLAB/Simulink建立了该柴油机的平均值模型,针对该柴油机的主机控制部分,设计了指数趋近率法滑模变结构控制以及基于径向基函数(RBF)神经网络的滑模控制器,并且使用所搭建的柴油机平均值模型对两种控... 本文以某型柴油机为研究对象,使用MATLAB/Simulink建立了该柴油机的平均值模型,针对该柴油机的主机控制部分,设计了指数趋近率法滑模变结构控制以及基于径向基函数(RBF)神经网络的滑模控制器,并且使用所搭建的柴油机平均值模型对两种控制算法进行对比。结果表明基于RBF径向基神经网络滑模控制器相对于传统的滑模控制器拥有更好的可靠性、更快的响应速度、更好的控制性能。 展开更多
关键词 船舶柴油机控制 平均值模型 rbf神经网络
下载PDF
基于RBF神经网络的光伏并网系统自适应等效建模方法 被引量:2
3
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
下载PDF
基于GM-RBF神经网络的导弹武器系统使用可用度评估方法研究 被引量:6
4
作者 刘炜 李田科 +1 位作者 于仕财 李建 《装备环境工程》 CAS 2013年第6期108-113,共6页
目的研究导弹武器系统使用可用度评估问题,方法通过基于故障数据的使用可用度评估,提出一种基于灰色模型GM(1,1)的径向基函数(RBF—Radial Basis Function)神经网络组合模型。结果该模型克服了灰色理论的长时间序列预估误差大和神经网... 目的研究导弹武器系统使用可用度评估问题,方法通过基于故障数据的使用可用度评估,提出一种基于灰色模型GM(1,1)的径向基函数(RBF—Radial Basis Function)神经网络组合模型。结果该模型克服了灰色理论的长时间序列预估误差大和神经网络的训练样本需求量大、输入变量选取困难等缺点。结论仿真结果表明,GM-RBF神经网络对导弹武器系统使用可用度评估具有评估误差小、精度高等优点。 展开更多
关键词 使用可用度 gm—rbf神经网络 导弹武器系统 评估方法
下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法 被引量:1
5
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
下载PDF
基于GA的RBF神经网络气液两相流持液率预测模型优化 被引量:1
6
作者 廖锐全 李龙威 +2 位作者 王伟 马斌 潘元 《长江大学学报(自然科学版)》 2024年第2期91-100,共10页
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色... 为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数。基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性。结果表明:GA-RBF神经网络模型均方误差为0.0017,均方根误差为0.0416,平均绝对误差为0.0281,拟合度为0.9483。相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力。 展开更多
关键词 持液率 气液两相流 rbf神经网络 遗传算法 数据清洗
下载PDF
基于MI-PSO-RBF神经网络的铁路客货运量预测研究 被引量:1
7
作者 薛锋 吴林鸿 +1 位作者 汪雯文 周琳 《铁道运输与经济》 北大核心 2024年第9期123-135,共13页
准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选... 准确地预测铁路客货运量对合理配置运输资源、提高铁路客货运组织工作效率有重要作用。为提高铁路客货运量的预测精度,提出一种基于MI-PSO-RBF神经网络的客货运量组合预测模型。本研究对铁路客货运量的影响因素及其内在关联进行分析,选取相关指标,利用互信息素法对指标进行筛选,构建影响因素指标体系。基于该指标体系,运用粒子群算法优化的RBF神经网络模型分别对铁路客货运量进行预测,并与传统的BP神经网络、RBF神经网络预测模型进行比较。结果显示,经过参数调整优化后的MI-PSO-RBF神经网络在铁路客运量及货运量的预测精度方面表现最佳,测试集R2分别达到了0.9481与0.9911,具有较高的精度及泛化能力,表明该组合预测模型能够进一步提升神经网络模型预测铁路客货运量精确度。 展开更多
关键词 客货运量预测 互信息素 粒子群算法 rbf神经网络 影响因素法
下载PDF
基于IPSO-RBF神经网络的西北内陆河流域突发水污染风险评估
8
作者 靳春玲 蔡惠春 +2 位作者 贡力 田亮 李战江 《环境科学与技术》 CAS CSCD 北大核心 2024年第9期120-127,共8页
突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模... 突发水污染事故会破坏环境、危害健康,开展西北内陆河流域突发水污染风险评估对于维护西部脆弱生态安全尤为重要。该文针对西北内陆河流域突发水污染问题,利用PSR模型遴选18个因素建立突发水污染风险评价指标体系,基于径向基神经网络模型(RBF)构建突发水污染风险评价模型。为进一步保证模型精度,采用改进惯性权重因子和学习因子的粒子群算法(IPSO)对神经网络模型参数进行优化,建立IPSO-RBF神经网络西北内陆河突发水污染风险评价模型,并运用该模型对石羊河流域武威段2017-2022年突发水污染进行风险等级评价。结果显示,石羊河流域武威段突发水污染2017-2019年风险等级为Ⅱ级,2020-2022年风险等级为Ⅲ级,结果与熵权-TOPSIS法一致,与流域治理情况相符。该研究成果有利于提升石羊河流域突发水污染的防控水平与应急处置能力,对于西北内陆河流域水资源管理以及祁连山生态保护具有重要意义。 展开更多
关键词 突发水污染 风险评估 rbf神经网络 IPSO算法 内陆河流域
下载PDF
基于混合算法下RBF神经网络的执行机构非线性特性在线辨识与补偿
9
作者 刘鑫屏 陈艺文 董子健 《动力工程学报》 CAS CSCD 北大核心 2024年第5期792-801,共10页
针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制... 针对控制系统中执行机构非线性特性在线辨识及补偿问题,研究了一种基于变步长核最小均方(SVSKLMS)和遗传算法结合的混合径向基(VHRBF)神经网络。利用径向基(RBF)神经网络不依赖于精确的数学模型即可得到被控对象信息的特点,建立了控制系统执行机构的非线性特性模型;为解决传统RBF神经网络辨识性能差的问题,使用遗传算法(GA)对神经网络的中心向量和方差进行优化,利用SVSKLMS算法对RBF神经网络模型中的权重进行优化,进而得到最佳的RBF神经网络。基于VHRBF神经网络及其逆模型补偿器对执行机构非线性特性进行在线辨识及补偿。仿真结果表明:与其他算法训练下的RBF神经网络相比,所提出的VHRBF神经网络能够精确辨识并补偿执行机构的非线性特性,并且具有更快的收敛速度、更优的收敛性能。 展开更多
关键词 rbf神经网络 在线辨识与补偿 执行机构 非线性特性
下载PDF
基于模糊RBF神经网络PI控制的塑料薄膜收卷张力控制系统研究
10
作者 张琴 王保升 方建士 《制造业自动化》 2024年第8期63-68,共6页
介绍了吹塑机收卷张力控制系统模型,建立收卷张力数学模型并得出影响塑料薄膜收卷张力的主要因素。针对常规PID在薄膜收卷张力控制中的缺陷,提出了基于模糊RBF神经网络PI控制的薄膜张力控制方法,模糊RBF神经网络参数的初始值先通过改进... 介绍了吹塑机收卷张力控制系统模型,建立收卷张力数学模型并得出影响塑料薄膜收卷张力的主要因素。针对常规PID在薄膜收卷张力控制中的缺陷,提出了基于模糊RBF神经网络PI控制的薄膜张力控制方法,模糊RBF神经网络参数的初始值先通过改进的遗传算法进行优化,加快误差的收敛速度。该控制方法既能利用模糊控制的非线性控制作用,又能利用神经网络的自学能力,实现PI控制器参数实时自整定的要求。仿真结果表明该系统响应适度快、超调小、抗干扰性强,具有优良的控制效果。 展开更多
关键词 张力控制 模糊rbf神经网络 遗传算法 PI控制 仿真
下载PDF
基于NSGA-Ⅱ与RBF神经网络的DPF结构参数优化
11
作者 贾德文 郭岩琦 +2 位作者 雷基林 毕玉华 聂学选 《中国工程机械学报》 北大核心 2024年第1期1-6,共6页
为降低某型号柴油机颗粒捕集器(DPF)在运行过程中的流动阻力,并使其保持较高的捕集效率。采用试验设计方法抽取代表性样本集,并分析影响因素对DPF捕集性能影响的显著性。利用径向基函数(RBF)神经网络构建所选变量与目标函数映射关系代... 为降低某型号柴油机颗粒捕集器(DPF)在运行过程中的流动阻力,并使其保持较高的捕集效率。采用试验设计方法抽取代表性样本集,并分析影响因素对DPF捕集性能影响的显著性。利用径向基函数(RBF)神经网络构建所选变量与目标函数映射关系代理模型,并结合第二代非劣排序遗传算法(NSGA-Ⅱ)与结合熵权的优劣解距离排序法(TOPSIS)得到关于目标函数的一组最优解。结果表明:该型号DPF平均压降降低了14.58%,且DPF平均捕集效率保持99%以上。 展开更多
关键词 柴油机颗粒捕集器 多目标优化 捕集性能 rbf神经网络 NSGA-Ⅱ遗传算法
下载PDF
基于SSA-RBF神经网络的煤自然发火预测模型
12
作者 高飞 梁宁 +1 位作者 贾喆 侯青 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期128-137,共10页
为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(... 为解决传统煤自燃预测模型预测状态单一和预测精度不高的问题,提出基于麻雀搜索算法(SSA)优化的径向基(RBF)神经网络煤自然发火预测模型。首先,采用程序升温试验分析煤样指标气随温度的变化特征,将煤自然发火过程按煤温分为缓慢(80≤t_(i)<120℃)、加速(120≤t_(i)<160℃)和激烈(t_(i)≥160℃)3个氧化阶段,同时分析这3个阶段指标气与煤温的灰色关联度;其次通过不同维度测试函数检验粒子群算法(PSO)、灰狼算法(GWO)和SSA算法性能;最后利用6个矿区数据验证基于SSA-RBF神经网络的煤自燃预测模型的优越性。结果显示,缓慢氧化阶段CO/ΔO_(2)、CO、C_(2)H_(4)这3种指标气体与煤温的灰色关联系数最大;而加速氧化阶段C_(2)H_(4)/C_(2)H_(6)、CO/ΔO_(2)、CO_(2)/CO_(3)种指标与煤温的灰色关联系数最大。3种不同维度函数的测试结果表明:SSA与PSO、GWO相比具有更好的全局搜索能力和稳定性,其收敛速度更快;神经元数量为5个、迭代次数为300次时,SSA-RBF神经网络预测模型对缓慢氧化和加速氧化阶段的预测准确性分别达到了99%和93%。 展开更多
关键词 麻雀搜索算法(SSA) 径向基函数(rbf)神经网络 煤自然发火 预测模型 指标气 灰色关联度
下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统
13
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 rbf神经网络 滑模控制 MATLAB/SIMULINK 动态性能
下载PDF
基于RBF神经网络的汽车内饰皮革智能切割系统设计
14
作者 贺丽娟 《中国皮革》 CAS 2024年第10期12-15,共4页
随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主... 随着汽车用皮革的迅速发展,开发一套满足汽车内饰皮革生产需求的智能切割系统具有重要意义。本文简述了汽车内饰皮革切割系统的发展,构建了基于径向基函数(Radial Basis Function,RBF)神经网络的汽车内饰皮革智能切割系统,介绍了系统主要硬件配置选型和软件的设计,提出了基于RBF神经网络PID(Proportional Integral Derivative,比例-积分-微分)控制算法;通过搭建试验平台,测试汽车内饰皮革智能切割系统的可行性、切割精度与效率。结果表明,该系统能够较好地满足汽车内饰皮革切割方面的需求。 展开更多
关键词 rbf神经网络 PID控制 汽车内饰 皮革 切割系统
下载PDF
基于动态规划与RBF神经网络的PHEV能量管理策略
15
作者 魏丽青 《汽车实用技术》 2024年第7期7-13,共7页
为提高插电式混合动力汽车燃油经济性,设计了一种基于动态规划和径向基函数(RBF)神经网络的插电式混合动力汽车能量管理策略。首先,建立了插电式混合汽车数学模型;其次,以发动机油耗最小为目标函数,采用动态规划求解全局最优的离线优化... 为提高插电式混合动力汽车燃油经济性,设计了一种基于动态规划和径向基函数(RBF)神经网络的插电式混合动力汽车能量管理策略。首先,建立了插电式混合汽车数学模型;其次,以发动机油耗最小为目标函数,采用动态规划求解全局最优的离线优化结果;最后,采用RBF神经网络对离线最优控制结果进行学习,建立了发动机输出转矩与车辆状态参数之间的非线性映射关系,得到了基于动态规划和RBF神经网络的能量管理策略。仿真结果表明,文章所提策略油耗较之于电量消耗-维持策略降低了2.92%,验证了该策略的有效性。 展开更多
关键词 插电式混合动力汽车 动态规划 rbf神经网络 能量管理
下载PDF
改进RBF神经网络在智能机器人轨迹规划中的研究 被引量:1
16
作者 刘翔 王开科 李菲 《机械设计与制造》 北大核心 2024年第4期90-94,共5页
针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器... 针对工业生产中对智能机器人轨迹规划的要求越来越高,在工业机器人运动模型的基础上,提出了一种将RBF神经网络和遗传算法相结合的工业机器人轨迹规划方法。通过遗传算法对RBF神经网络的网络结构、连接权值和阈值进行优化,精确跟踪机器人的轨迹。通过仿真将与未改进前的轨迹规划算法进行比较,验证该方法的优越性。结果表明,与改进前的规划算法相比,文中规划方法误差小,适应性强,能够满足工业机器人轨迹规划的预期要求。为工业机器人轨迹规划方法的发展提供了一定的参考。 展开更多
关键词 工业机器人 轨迹规划 rbf神经网络 遗传算法 关节轨迹
下载PDF
一般大气环境下钢筋锈蚀深度的RBF神经网络预测模型研究 被引量:1
17
作者 王胜利 刘华 +2 位作者 郑山锁 董淑卿 黄瑜 《地震工程学报》 CSCD 北大核心 2024年第2期269-277,共9页
钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数... 钢筋锈蚀深度预测是评估在役RC结构服役性能的基础。为建立一般大气环境RC构件中钢筋锈蚀深度预测模型,通过收集实测数据,分析影响钢筋锈蚀深度的主要参数及其影响规律,继而基于实测数据建立数值模型和RBF神经网络预测模型,并进行参数敏感性分析。研究结果表明:与数值模型相比,RBF神经网络对钢筋锈蚀深度预测效率与精度更高,能够有效映射各影响参数与钢筋锈蚀深度之间复杂的非线性关系。参数敏感性分析结果显示,钢筋混凝土表面锈胀裂缝宽度对钢筋锈蚀深度影响最大,钢筋直径、保护层厚度与钢筋直径之比和混凝土抗压强度等其他因素影响次之。所得模型可用于工程检测中钢筋锈蚀程度预测与RC构筑物剩余服役寿命评估。 展开更多
关键词 钢筋混凝土 钢筋锈蚀 rbf神经网络 锈蚀深度预测 敏感性分析
下载PDF
基于多目标灰狼优化算法与RBF神经网络的真空灭弧室触头结构优化设计 被引量:1
18
作者 丁璨 王周琳 +1 位作者 袁召 李江 《高电压技术》 EI CAS CSCD 北大核心 2024年第2期543-550,共8页
在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一... 在真空灭弧室触头开断过程中,合适的磁场分布有利于提高其开断性能;在合闸过程中,动、静触头间存在的电动斥力会导致触头出现弹跳现象。针对以上问题,首先建立了带铁芯式杯状纵磁触头的三维模型,进行了磁场分布与电动力的计算;为了进一步提高触头的性能,然后构建了以触头片开槽长度、开槽宽度、径向偏转角度、杯座斜槽高度及单个斜槽上下旋转角度为输入,电流峰值时刻触头间隙中心平面纵向磁场强度最大值、过零时刻中心点处磁滞时间、合闸时动静触头间的电动斥力分别为输出的RBF神经网络模型;最后结合RBF神经网络模型与多目标灰狼优化算法(MOGWO)对触头结构进行了优化。结果表明:与初始结构参数相比,当触头片开槽长度为19.74mm、宽度为3.94mm、径向偏转角为19.9°、杯座斜槽高度为18.0mm、斜槽上下旋转角为119.2°时,触头具有更好的磁场分布特性,且动、静触头间的电动斥力明显减小,有利于提高触头的工作性能。 展开更多
关键词 真空灭弧室触头 电动斥力 rbf神经网络 磁场特性 多目标灰狼优化算法
下载PDF
基于RBF神经网络的闭链下肢康复机器人自适应补偿控制 被引量:1
19
作者 李东琦 秦建军 +2 位作者 孙茂琳 郑皓冉 李伟 《机械传动》 北大核心 2024年第4期60-68,共9页
在下肢康复机器人的康复训练过程中,模型参数、环境干扰等不确定性因素会影响机器人轨迹跟踪的精度。针对这一问题,提出了一种基于径向基函数(Radial Basis Function,RBF)神经网络的自适应补偿控制,该控制方法能够提高机械系统轨迹跟踪... 在下肢康复机器人的康复训练过程中,模型参数、环境干扰等不确定性因素会影响机器人轨迹跟踪的精度。针对这一问题,提出了一种基于径向基函数(Radial Basis Function,RBF)神经网络的自适应补偿控制,该控制方法能够提高机械系统轨迹跟踪的精确性。首先,设计一款具有4种工作模式、运动稳定的闭链卧式下肢康复机器人结构;然后,利用拉格朗日方法求解动力学名义模型,将康复装置的模型参数以及外界干扰等不确定性因素分离出来,并设计基于RBF神经网络的自适应补偿算法对其进行逼近控制;最后,通过Matlab/Simulink环境对其进行仿真验证,证明了该控制策略的有效性。结果显示,在人体步态曲线轨迹跟踪中,提出的基于RBF神经网络的自适应补偿算法相比传统的模糊比例-积分-微分(Proportional Integral Derivative,PID)控制的方法响应速度快、跟踪效果好,且髋关节和膝关节轨迹跟踪的角度误差峰值分别为0.08°和0.13°,远小于患者下肢在康复运动中的转动角度。设计了单腿样机试验,试验结果表明,采用的RBF补偿自适应控制器能够实现高精度的跟踪结果,也能够满足患者在康复训练中安全性的要求。 展开更多
关键词 下肢康复机器人 闭链结构 rbf神经网络 不确定性 自适应补偿控制
下载PDF
基于AGA-RBF神经网络模型的叶绿素a质量浓度预测研究 被引量:1
20
作者 刘星宇 程建 +1 位作者 牛艺晓 杨春 《四川师范大学学报(自然科学版)》 CAS 2024年第5期670-675,共6页
叶绿素a质量浓度是预测湖泊水华形成的重要影响因子,但常用的径向基(radial basis function,RBF)神经网络存在容易陷入局部极值,导致预测精度欠佳.针对这一问题,采用自适应遗传算法(adaptive genetic algorithm,AGA)对RBF神经网络进行优... 叶绿素a质量浓度是预测湖泊水华形成的重要影响因子,但常用的径向基(radial basis function,RBF)神经网络存在容易陷入局部极值,导致预测精度欠佳.针对这一问题,采用自适应遗传算法(adaptive genetic algorithm,AGA)对RBF神经网络进行优化,构建基于AGA-RBF神经网络预测模型,以莆田东圳水库为应用案例,对叶绿素a质量浓度进行预测,通过采集到的数据对预测模型进行仿真,对比均方根误差(RMSE)、相对误差(RE)以及平均相对误差(MRE),验证改进后的AGA-RBF模型具有更好的预测精度,以期对叶绿素a质量浓度进行长期预测. 展开更多
关键词 rbf人工神经网络 自适应遗传算法 预测模型 叶绿素a质量浓度
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部