为了补偿温度变化对滤波器频率响应造成的漂移,提出了一种全差分运算放大器,该运算放大器采用电压负反馈方式稳定输出共模电平,调节输入对差分管衬底偏置来改变阈值电压差,从而调节放大器的跨导来调整滤波器的截止频率,实现了基于Gm-C...为了补偿温度变化对滤波器频率响应造成的漂移,提出了一种全差分运算放大器,该运算放大器采用电压负反馈方式稳定输出共模电平,调节输入对差分管衬底偏置来改变阈值电压差,从而调节放大器的跨导来调整滤波器的截止频率,实现了基于Gm-C结构的三阶Chebyshev低通滤波器,滤波器采用GSMC的0.13μm SOI工艺,电源电压1.2 V,6层金属设计,仿真结果表明,该滤波器通带增益0 d B,-1 d B截止频率8 MHz,38 MHz处增益衰减达到-35 d B,带内波动0.5 d B,输入为1 MHz,400 m V Vpp时,THD为-57 d B,功耗7 m W.在特殊环境具有明显的优势。展开更多
The high linearity low-noise filter is an indispensable key circuit in the communication system.Based on the structure of current-reuse source-degradation operational transconductance amplifier(OTA),a 5 GHz current-mo...The high linearity low-noise filter is an indispensable key circuit in the communication system.Based on the structure of current-reuse source-degradation operational transconductance amplifier(OTA),a 5 GHz current-mode low-noise Gm-C filter suitable for high-speed communication systems is proposed.Thanks to the proposed current mode structure and the OTA’s high-power efficiency and high linearity,the filter obtains good noise and high linearity performance with very low power consumption.The filter is designed in standard 65 nm CMOS technology and occupies a core area of 0.06 mm^(2).The simulation results show that the operating bandwidth is 5 GHz,the IIP3 is35 d Bm,and the power consumption is only 3.2 m W.展开更多
A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation...A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation and source degeneration techniques. The attenuation technique is implemented by bulk driven cell which is used for low supply voltage circuits. The OTA is designed to operate with a 0.9 V supply voltage and consumes 58.8 μW power. A 600 mVppd sine wave input signal at 1 MHz frequency shows total harmonic distortion (THD) better than -40 dB over the tuning range of the transconductance. The OTA has been used to realize a tunable Gm-C low-pass filter with gain tuning from 5 dB to 21 dB with 4 dB gain steps, which results in power consumptions of 411.6 to 646.8 μW. This low voltage filter can operate as channel select filter and variable gain amplifier (VGA) for wireless sensor network (WSN) applications. The proposed OTA and filter have been simulated in 0.18 μm CMOS technology. Corner case and temperature simulation results are also included to forecast process and temperature variation affects after fabrication.展开更多
文摘为了补偿温度变化对滤波器频率响应造成的漂移,提出了一种全差分运算放大器,该运算放大器采用电压负反馈方式稳定输出共模电平,调节输入对差分管衬底偏置来改变阈值电压差,从而调节放大器的跨导来调整滤波器的截止频率,实现了基于Gm-C结构的三阶Chebyshev低通滤波器,滤波器采用GSMC的0.13μm SOI工艺,电源电压1.2 V,6层金属设计,仿真结果表明,该滤波器通带增益0 d B,-1 d B截止频率8 MHz,38 MHz处增益衰减达到-35 d B,带内波动0.5 d B,输入为1 MHz,400 m V Vpp时,THD为-57 d B,功耗7 m W.在特殊环境具有明显的优势。
基金supported in part by the National Key R&D Program of China(No.2018YFE0205900)in part by the Natural Science Foundation of Jiangsu Province of China(No.BK20180368)。
文摘The high linearity low-noise filter is an indispensable key circuit in the communication system.Based on the structure of current-reuse source-degradation operational transconductance amplifier(OTA),a 5 GHz current-mode low-noise Gm-C filter suitable for high-speed communication systems is proposed.Thanks to the proposed current mode structure and the OTA’s high-power efficiency and high linearity,the filter obtains good noise and high linearity performance with very low power consumption.The filter is designed in standard 65 nm CMOS technology and occupies a core area of 0.06 mm^(2).The simulation results show that the operating bandwidth is 5 GHz,the IIP3 is35 d Bm,and the power consumption is only 3.2 m W.
文摘A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation and source degeneration techniques. The attenuation technique is implemented by bulk driven cell which is used for low supply voltage circuits. The OTA is designed to operate with a 0.9 V supply voltage and consumes 58.8 μW power. A 600 mVppd sine wave input signal at 1 MHz frequency shows total harmonic distortion (THD) better than -40 dB over the tuning range of the transconductance. The OTA has been used to realize a tunable Gm-C low-pass filter with gain tuning from 5 dB to 21 dB with 4 dB gain steps, which results in power consumptions of 411.6 to 646.8 μW. This low voltage filter can operate as channel select filter and variable gain amplifier (VGA) for wireless sensor network (WSN) applications. The proposed OTA and filter have been simulated in 0.18 μm CMOS technology. Corner case and temperature simulation results are also included to forecast process and temperature variation affects after fabrication.