针对传统的到达时差(Time difference of arrival,TDOA)多目标跟踪算法计算量大,估计精度低,虚警值较多等问题,提出了一种预关联高斯混合概率假设密度(P-GMPHD)多目标跟踪算法。该算法利用随机集理论对TDOA的目标状态和观测值进行建模,...针对传统的到达时差(Time difference of arrival,TDOA)多目标跟踪算法计算量大,估计精度低,虚警值较多等问题,提出了一种预关联高斯混合概率假设密度(P-GMPHD)多目标跟踪算法。该算法利用随机集理论对TDOA的目标状态和观测值进行建模,通过递推高斯混合来预测和更新各状态后验概率密度,避免了复杂的数据关联问题。为减轻高斯混合滤波的计算量,提出了将预测信息与观测值进行预关联的思想,剔除虚警值,从而显著地降低了计算量。仿真结果表明,该算法能在杂波环境下有效地利用TDOA测量值跟踪未知数目的多个运动目标,并且在不影响跟踪性能的情形下,其计算量比一般GMPHD有了较大的降低。展开更多
文摘针对传统的到达时差(Time difference of arrival,TDOA)多目标跟踪算法计算量大,估计精度低,虚警值较多等问题,提出了一种预关联高斯混合概率假设密度(P-GMPHD)多目标跟踪算法。该算法利用随机集理论对TDOA的目标状态和观测值进行建模,通过递推高斯混合来预测和更新各状态后验概率密度,避免了复杂的数据关联问题。为减轻高斯混合滤波的计算量,提出了将预测信息与观测值进行预关联的思想,剔除虚警值,从而显著地降低了计算量。仿真结果表明,该算法能在杂波环境下有效地利用TDOA测量值跟踪未知数目的多个运动目标,并且在不影响跟踪性能的情形下,其计算量比一般GMPHD有了较大的降低。