Based on the use of Global Navigation Satellite System (GNSS) for meteorological detection in the world, we used the GNSS/MET detection equipment in the meteorological departments of Liaoning Province of China and its...Based on the use of Global Navigation Satellite System (GNSS) for meteorological detection in the world, we used the GNSS/MET detection equipment in the meteorological departments of Liaoning Province of China and its data to study and summarize the maintenance methods of GNSS/MET (Global Navigation Satellite System Meteorology) detection equipment and the application of water vapor products in operational systems. The results show that: 1) For GNSS/MET failures, specific inspections and classifications can be performed according to different phenomena;2) The GNSS water vapor measurement station samples every 30 seconds, forming one set of GNSS data every hour, and can detonate the atmospheric precipitation by solving the original data;3) Using the “Navigation Satellite Remote Sensing Water Vapor Application Management System”, the GNSS/MET water vapor products can be directly displayed. We can get the conclusion that GNSS/MET has far-reaching significance for studying the law of atmospheric water vapor changes and enhancing the ability to monitor severe weather such as heavy rain and strong convection.展开更多
Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision usi...Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.展开更多
文摘Based on the use of Global Navigation Satellite System (GNSS) for meteorological detection in the world, we used the GNSS/MET detection equipment in the meteorological departments of Liaoning Province of China and its data to study and summarize the maintenance methods of GNSS/MET (Global Navigation Satellite System Meteorology) detection equipment and the application of water vapor products in operational systems. The results show that: 1) For GNSS/MET failures, specific inspections and classifications can be performed according to different phenomena;2) The GNSS water vapor measurement station samples every 30 seconds, forming one set of GNSS data every hour, and can detonate the atmospheric precipitation by solving the original data;3) Using the “Navigation Satellite Remote Sensing Water Vapor Application Management System”, the GNSS/MET water vapor products can be directly displayed. We can get the conclusion that GNSS/MET has far-reaching significance for studying the law of atmospheric water vapor changes and enhancing the ability to monitor severe weather such as heavy rain and strong convection.
基金This work was supported by“The National Natural Science Foundation of China(No.41404033)”“The National Science and Technology Basic Work of China(No.2015FY310200)”+1 种基金“The State Key Program of National Natural Science Foundation of China(No.41730109)”“The Jiangsu Dual Creative Teams Program Project Awarded in 2017”and thanks for the data from IGS and iGMAS。
文摘Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.