Many optical systems that deal with polarization rely on the adaptability of controlling light reflection in the lithography-free nanostructure. In this study, we explore the Goos–H?nchen(GH) shift and Imbert–Fedoro...Many optical systems that deal with polarization rely on the adaptability of controlling light reflection in the lithography-free nanostructure. In this study, we explore the Goos–H?nchen(GH) shift and Imbert–Fedorov(IF) shift in a biaxial hyperbolic film on a uniaxial hyperbolic substrate. This research statistically calculates and analyzes the GH shift and IF shift for the natural biaxial hyperbolic material(NBHM). We select the surface with the strongest anisotropy within the NBHM and obtain the complex beam-shift spectrum. By incorporating the NBHM film, the GH shift caused by a transversely magnetic incident-beam on the surface increases significantly compared with that on the uniaxial hyperbolic material. The maximum of GH shift can reach 86 λ0at about 841 cm-1when the thickness of NBHM is 90 nm, and the IF shift can approach 2.7 λ0for a circularly-polarized beam incident on a 1700-nm-thick NBHM. It is found that the spatialshift increases when a highly anisotropic hyperbolic polariton is excited in hyperbolic material, where the shift spectrum exhibits an oscillating behaviour accompanied with sharp shift peak(steep slope). This large spatial shift may provide an alternative strategy to develop novel sub-micrometric optical devices and biosensors.展开更多
We obtain a large positive lateral shift of a light beam reflected from a layered configuration due to the formation of the unusual standing wave, which acts like the forward surface wave. An explicitly analytic condi...We obtain a large positive lateral shift of a light beam reflected from a layered configuration due to the formation of the unusual standing wave, which acts like the forward surface wave. An explicitly analytic condition to obtain the large lateral shift is presented. Finally we present a numerical simulation for the lateral displacement of a Gaussian beam.展开更多
It is theoretically shown that the simultaneously large positive and negative lateral displacements will appear when the resonant condition is satisfied for a TE-polarized light beam reflected from the total internal ...It is theoretically shown that the simultaneously large positive and negative lateral displacements will appear when the resonant condition is satisfied for a TE-polarized light beam reflected from the total internal reflection configuration with a weakly absorbing dielectric film. Appearance of the enhanced negative lateral displacement is relative to the incidence angle, absorption of the thin film and its thickness. If we select an appropriate weakly absorbing dielectric film and its thickness, the simultaneously enhanced positive and negative lateral displacements will appear at different resonant angles. These phenomena may lead to convenient measurements and interesting applications in optical devices.展开更多
A cold atomic medium(Rydberg medium) with cascade configuration under the blockade mechanism is considered. A partial coherent light(PCL) beam is incident on the medium, which makes an angle θ with z-axis. We study t...A cold atomic medium(Rydberg medium) with cascade configuration under the blockade mechanism is considered. A partial coherent light(PCL) beam is incident on the medium, which makes an angle θ with z-axis. We study the influence of PCL field on the transmission spectrum and find high transmission of probe field for PCL field.Conversely, it is investigated that the transparency of probe field decrease for coherent light field. The transmission of probe field is also studied via beam width of PCL field and investigated high transmission of probe field for small beam width and vice versa. Interestingly, the Goos-H?nchen shift(GHS) in the transmitted light(TL) is studied for PCL field. Large negative and positive GHS in the TL are investigated for PCL field and small beam width of PCL field.展开更多
Bound states in the continuum(BIC)have been widely researched and applied in optics due to their unique electromagnetic response.However,there are still difficulties in predicting and customizing BIC spectra.To addres...Bound states in the continuum(BIC)have been widely researched and applied in optics due to their unique electromagnetic response.However,there are still difficulties in predicting and customizing BIC spectra.To address this issue,we design an efficient combined neural network for highly accurate prediction of quasi-bound states in the continuum(q-BIC)spectrum,as well as for the inverse design of the polarization independent enhancement of the Goos-H?nchen(GH)shift.Firstly,we propose a C_(4)symmetric metasurface for achieving q-BIC spectrum and providing the condition of enhanced GH shift.By employing a combined neural network,the intensity,position,shape,and phase of q-BIC spectrum with ultra-narrow resonance can be accurately predicted and on-demand customized,even under a small dataset.Besides,we develop a screening algorithm for the q-BIC spectrum to quickly realize the polarization independent enhancement of GH shift.As an application,an ultra-high sensitivity refractive index sensor has been proposed,whose sensitivity can reach 2.31×10~7μm/RIU for TM polarization and 1.03×10~6μm/RIU for TE polarization.Therefore,this work brings new solutions for quick prediction of q-BIC spectrum and the development of flexible polarization photonic devices.展开更多
基金Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2020A014)the Fund from the Education Commission of Heilongjiang Province, China (Grant No. 2020-KYYWF352)+1 种基金the Fund from the Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology),Ministry of Education, China (Grant Nos. KFM202005 and KF20171110)the Harbin Normal University Postgraduate Innovative Research Project, Heilongjiang Province, China (Grant Nos. HSDSSCX2022-53 and HSDSSCX2022-49)。
文摘Many optical systems that deal with polarization rely on the adaptability of controlling light reflection in the lithography-free nanostructure. In this study, we explore the Goos–H?nchen(GH) shift and Imbert–Fedorov(IF) shift in a biaxial hyperbolic film on a uniaxial hyperbolic substrate. This research statistically calculates and analyzes the GH shift and IF shift for the natural biaxial hyperbolic material(NBHM). We select the surface with the strongest anisotropy within the NBHM and obtain the complex beam-shift spectrum. By incorporating the NBHM film, the GH shift caused by a transversely magnetic incident-beam on the surface increases significantly compared with that on the uniaxial hyperbolic material. The maximum of GH shift can reach 86 λ0at about 841 cm-1when the thickness of NBHM is 90 nm, and the IF shift can approach 2.7 λ0for a circularly-polarized beam incident on a 1700-nm-thick NBHM. It is found that the spatialshift increases when a highly anisotropic hyperbolic polariton is excited in hyperbolic material, where the shift spectrum exhibits an oscillating behaviour accompanied with sharp shift peak(steep slope). This large spatial shift may provide an alternative strategy to develop novel sub-micrometric optical devices and biosensors.
基金Supported by the National Natural Science Foundation of China under Grant No 10547138.
文摘We obtain a large positive lateral shift of a light beam reflected from a layered configuration due to the formation of the unusual standing wave, which acts like the forward surface wave. An explicitly analytic condition to obtain the large lateral shift is presented. Finally we present a numerical simulation for the lateral displacement of a Gaussian beam.
基金Supported by the National Natural Science Foundation of China under Grant 60377025, the Science and Technology Commission of Shanghai under Grant 04JC14036, and the Shanghai Leading Academic Discipline Programme under Grant No T0104.
文摘It is theoretically shown that the simultaneously large positive and negative lateral displacements will appear when the resonant condition is satisfied for a TE-polarized light beam reflected from the total internal reflection configuration with a weakly absorbing dielectric film. Appearance of the enhanced negative lateral displacement is relative to the incidence angle, absorption of the thin film and its thickness. If we select an appropriate weakly absorbing dielectric film and its thickness, the simultaneously enhanced positive and negative lateral displacements will appear at different resonant angles. These phenomena may lead to convenient measurements and interesting applications in optical devices.
文摘A cold atomic medium(Rydberg medium) with cascade configuration under the blockade mechanism is considered. A partial coherent light(PCL) beam is incident on the medium, which makes an angle θ with z-axis. We study the influence of PCL field on the transmission spectrum and find high transmission of probe field for PCL field.Conversely, it is investigated that the transparency of probe field decrease for coherent light field. The transmission of probe field is also studied via beam width of PCL field and investigated high transmission of probe field for small beam width and vice versa. Interestingly, the Goos-H?nchen shift(GHS) in the transmitted light(TL) is studied for PCL field. Large negative and positive GHS in the TL are investigated for PCL field and small beam width of PCL field.
基金supported by the National Natural Science Foundation of China(Grant Nos.12374273,12421005,62271332,and 62275162)Training Program for Excellent Young Innovators of Changsha(Grant No.kq2107013)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515030152)Shenzhen Government’s Plan of Science and Technology(Grant Nos.JCYJ20180305124927623,and JCYJ20190808150205481)Hunan Provincial Major Sci-Tech Program(Grant No.2023ZJ1010)。
文摘Bound states in the continuum(BIC)have been widely researched and applied in optics due to their unique electromagnetic response.However,there are still difficulties in predicting and customizing BIC spectra.To address this issue,we design an efficient combined neural network for highly accurate prediction of quasi-bound states in the continuum(q-BIC)spectrum,as well as for the inverse design of the polarization independent enhancement of the Goos-H?nchen(GH)shift.Firstly,we propose a C_(4)symmetric metasurface for achieving q-BIC spectrum and providing the condition of enhanced GH shift.By employing a combined neural network,the intensity,position,shape,and phase of q-BIC spectrum with ultra-narrow resonance can be accurately predicted and on-demand customized,even under a small dataset.Besides,we develop a screening algorithm for the q-BIC spectrum to quickly realize the polarization independent enhancement of GH shift.As an application,an ultra-high sensitivity refractive index sensor has been proposed,whose sensitivity can reach 2.31×10~7μm/RIU for TM polarization and 1.03×10~6μm/RIU for TE polarization.Therefore,this work brings new solutions for quick prediction of q-BIC spectrum and the development of flexible polarization photonic devices.