This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N...This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
To improve the performance of Saitou and Nei's algorithm (SN) and Studier and Keppler's improved algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the computat...To improve the performance of Saitou and Nei's algorithm (SN) and Studier and Keppler's improved algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the computation, a fast algorithm is proposed. The proposed algorithm includes three techniques. First, a linear array A[N] is introduced to store the sum of every row of the distance matrix (the same as SK), which can eliminate many repeated computations. Secondly, the value of A [i] is computed only once at the beginning of the algorithm, and is updated by three elements in the iteration. Thirdly, a very compact formula for the sum of all the branch lengths of operational taxonomic units (OTUs) i and j is designed, and the correctness of the formula is proved. The experimental results show that the proposed algorithm is from tens to hundreds times faster than SN and roughly two times faster than SK when N increases, constructing a tree with 2 000 OTUs in 3 min on a current desktop computer. To earn the time with the cost of the space and reduce the computations in the innermost loop are the basic solutions for algorithms with many loops.展开更多
In Corley′s algorithm for all efficient spanning trees, final solutions include many spanning trees, which are not all efficient. In this paper, a new algorithm is presented, which corrects and modifies Corley′s alg...In Corley′s algorithm for all efficient spanning trees, final solutions include many spanning trees, which are not all efficient. In this paper, a new algorithm is presented, which corrects and modifies Corley′s algorithm. A necessary condition is developed for the subtree of an efficient spanning tree. According to the condition the new algorithm is established and its efficiency is proved.展开更多
This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new str...This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.展开更多
A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree...A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift...Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift and structural skew.Design/methodology/approach: Inspired by the generality based methods, this study builds tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. The proposed algorithm is characterized by the following four features:(1) the ancestors should be more representative than the descendants,(2) the semantic meaning along the ancestor-descendant paths needs to be coherent,(3) the children of one parent are collectively exhaustive and mutually exclusive in describing their parent, and(4) tags are roughly evenly distributed to their upper-level parents to avoid structural skew. Findings: The proposed algorithm has been compared with a well-established solution Heymann Tag Tree(HTT). The experimental results using a social tag dataset showed that the proposed algorithm with its default condition outperformed HTT in precision based on Open Directory Project(ODP) classification. It has been verified that h-degree can be applied as a better node generality metric compared with degree centrality.Research limitations: A thorough investigation into the evaluation methodology is needed, including user studies and a set of metrics for evaluating semantic coherence and navigation performance.Practical implications: The algorithm will benefit the use of digital resources by generating a flexible domain knowledge structure that is easy to navigate. It could be used to manage multiple resource collections even without social annotations since tags can be keywords created by authors or experts, as well as automatically extracted from text.Originality/value: Few previous studies paid attention to the issue of whether the tagging systems are easy to navigate for users. The contributions of this study are twofold:(1) an algorithm was developed to construct tag trees with consideration given to both semanticcoherence and structural balance and(2) the effectiveness of a node generality metric, h-degree, was investigated in a tag co-occurrence network.展开更多
It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems i...It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.展开更多
Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the betteri...Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the bettering of ID3 algorithm and constructa data set of the scholarship evaluation system through the analysis of the related attributes in scholarship evaluation information.And also having found some factors that plays a significant role in the growing up of the college students through analysis and re-search of moral education, intellectural education and culture&PE.展开更多
Networking plays a crucial role in cloud computing especially in an inter-cloud environment, where data communications among data centers located at different geographical sites form the foundation of inter-cloud fede...Networking plays a crucial role in cloud computing especially in an inter-cloud environment, where data communications among data centers located at different geographical sites form the foundation of inter-cloud federation. Data transmissions required for inter-cloud federation in the complex inter-cloud networking system are often point-to-multi points, which calls for a more effective and efficient multicast routing algorithm in complex networking systems. In this paper, we investigate the multicast routing problem in the inter-cloud context with K constraints where K ≥ 2. Unlike most of existing algorithms that are too complex to be applied in practical scenarios, a novel and fast algorithm for establishing multicast routing tree for interclouds is proposed. The proposed algorithm leverages an entropybased process to aggregate all weights into a comprehensive metric, and then uses it to search a multicast tree(MT) on the basis of the shortest path tree(SPT). We conduct complexity analysis and extensive simulations for the proposed algorithm from the approximation perspective. Both analytical and experimental results demonstrate that the algorithm is more efficient than a representative multi-constrained multicast routing algorithm in terms of both speed and accuracy, and thus we believe that the proposed algorithm is applicable to the inter-cloud environment.展开更多
The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a...The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a decision tree.This article proposes a new approach based on an improved ID3 algorithm.The new algorithm introduces the importance factor λ when calculating the information entropy.It can strengthen the label of important attributes of a tree and reduce the label of non-important attributes.The algorithm overcomes the flaw of the traditional ID3 algorithm which tends to choose the attributes with more values,and also improves the efficiency and flexibility in the process of generating decision trees.展开更多
First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computat...First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.展开更多
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar...Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.展开更多
This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure ...This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm. This algorithm uses the FDG (formula to divide elements into groups) to sort (the FDG sorts a sequence of n elements in expected tir O(n)) and uses the method of path compression to find and to unite. Therefore. n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)).展开更多
To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based...To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based on a research of unordered tree inclusion matching.In this algorithm,the pattern library is composed of formalization dependency syntax trees that are derived from large-scale metaphor sentences.These kinds of metaphor sentences are saved in the pattern library in advance.The main process of this algorithm is up-down searching and bottom-up backtracking revising.The algorithm discovers potential metaphoric structures in Chinese sentences from metaphoric dependency pattern library.Finally,the feasibility and efficiency of the new matching algorithm are further testified by the results of a series of experiments on dependency pattern library.Hence,accurate dependency relationships can be achieved through this algorithm.展开更多
Based on the graphic theory and improved genetic algorithm,an improved genetic algorithm to search the minimum spanning trees is given . The algorithm uses binary code to represent the problem of minimum spanning tree...Based on the graphic theory and improved genetic algorithm,an improved genetic algorithm to search the minimum spanning trees is given . The algorithm uses binary code to represent the problem of minimum spanning trees. It designs the corresponding fitness function,operator and few controlling strategies to improve its speed and evolutionary efficiency.Only one solution can be gotten with running traditional al-gorithem atone time.The new algorithm can get a set of the solutions with higher probability in a shorter time.The experiment shows that it has a better performance than traditional methods.展开更多
文摘This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘To improve the performance of Saitou and Nei's algorithm (SN) and Studier and Keppler's improved algorithm (SK) for constructing neighbor-joining phylogenetic trees and reduce the time complexity of the computation, a fast algorithm is proposed. The proposed algorithm includes three techniques. First, a linear array A[N] is introduced to store the sum of every row of the distance matrix (the same as SK), which can eliminate many repeated computations. Secondly, the value of A [i] is computed only once at the beginning of the algorithm, and is updated by three elements in the iteration. Thirdly, a very compact formula for the sum of all the branch lengths of operational taxonomic units (OTUs) i and j is designed, and the correctness of the formula is proved. The experimental results show that the proposed algorithm is from tens to hundreds times faster than SN and roughly two times faster than SK when N increases, constructing a tree with 2 000 OTUs in 3 min on a current desktop computer. To earn the time with the cost of the space and reduce the computations in the innermost loop are the basic solutions for algorithms with many loops.
文摘In Corley′s algorithm for all efficient spanning trees, final solutions include many spanning trees, which are not all efficient. In this paper, a new algorithm is presented, which corrects and modifies Corley′s algorithm. A necessary condition is developed for the subtree of an efficient spanning tree. According to the condition the new algorithm is established and its efficiency is proved.
基金Grant from LIESMARS (No.WKL(06)0302)the Basic Research Grant of CASM(No.G7721)
文摘This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.
基金the National Natural Science Foundation of China (70471065)the Shanghai Leading Academic Discipline Project (T0502).
文摘A new problem of degree-constrained Euclidean Steiner minimal tree is discussed, which is quite useful in several fields. Although it is slightly different from the traditional degree-constrained minimal spanning tree, it is also NP-hard. Two intelligent algorithms are proposed in an attempt to solve this difficult problem. Series of numerical examples are tested, which demonstrate that the algorithms also work well in practice.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
基金funded by the National Natural Science Foundation of China(Grand No.:70903008)supported by COGS Lab in School of Government,Beijing Normal University
文摘Purpose: This study introduces an algorithm to construct tag trees that can be used as a userfriendly navigation tool for knowledge sharing and retrieval by solving two issues of previous studies, i.e. semantic drift and structural skew.Design/methodology/approach: Inspired by the generality based methods, this study builds tag trees from a co-occurrence tag network and uses the h-degree as a node generality metric. The proposed algorithm is characterized by the following four features:(1) the ancestors should be more representative than the descendants,(2) the semantic meaning along the ancestor-descendant paths needs to be coherent,(3) the children of one parent are collectively exhaustive and mutually exclusive in describing their parent, and(4) tags are roughly evenly distributed to their upper-level parents to avoid structural skew. Findings: The proposed algorithm has been compared with a well-established solution Heymann Tag Tree(HTT). The experimental results using a social tag dataset showed that the proposed algorithm with its default condition outperformed HTT in precision based on Open Directory Project(ODP) classification. It has been verified that h-degree can be applied as a better node generality metric compared with degree centrality.Research limitations: A thorough investigation into the evaluation methodology is needed, including user studies and a set of metrics for evaluating semantic coherence and navigation performance.Practical implications: The algorithm will benefit the use of digital resources by generating a flexible domain knowledge structure that is easy to navigate. It could be used to manage multiple resource collections even without social annotations since tags can be keywords created by authors or experts, as well as automatically extracted from text.Originality/value: Few previous studies paid attention to the issue of whether the tagging systems are easy to navigate for users. The contributions of this study are twofold:(1) an algorithm was developed to construct tag trees with consideration given to both semanticcoherence and structural balance and(2) the effectiveness of a node generality metric, h-degree, was investigated in a tag co-occurrence network.
基金National Natural Science Foundation of China(No.41271435)National Natural Science Foundation of China Youth Found(No.41301479)。
文摘It is proposed a high resolution remote sensing image segmentation method which combines static minimum spanning tree(MST)tessellation considering shape information and the RHMRF-FCM algorithm.It solves the problems in the traditional pixel-based HMRF-FCM algorithm in which poor noise resistance and low precision segmentation in a complex boundary exist.By using the MST model and shape information,the object boundary and geometrical noise can be expressed and reduced respectively.Firstly,the static MST tessellation is employed for dividing the image domain into some sub-regions corresponding to the components of homogeneous regions needed to be segmented.Secondly,based on the tessellation results,the RHMRF model is built,and regulation terms considering the KL information and the information entropy are introduced into the FCM objective function.Finally,the partial differential method and Lagrange function are employed to calculate the parameters of the fuzzy objective function for obtaining the global optimal segmentation results.To verify the robustness and effectiveness of the proposed algorithm,the experiments are carried out with WorldView-3(WV-3)high resolution image.The results from proposed method with different parameters and comparing methods(multi-resolution method and watershed segmentation method in eCognition software)are analyzed qualitatively and quantitatively.
文摘Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the bettering of ID3 algorithm and constructa data set of the scholarship evaluation system through the analysis of the related attributes in scholarship evaluation information.And also having found some factors that plays a significant role in the growing up of the college students through analysis and re-search of moral education, intellectural education and culture&PE.
基金supported by the National Natural Science Foundation of China(61309031)
文摘Networking plays a crucial role in cloud computing especially in an inter-cloud environment, where data communications among data centers located at different geographical sites form the foundation of inter-cloud federation. Data transmissions required for inter-cloud federation in the complex inter-cloud networking system are often point-to-multi points, which calls for a more effective and efficient multicast routing algorithm in complex networking systems. In this paper, we investigate the multicast routing problem in the inter-cloud context with K constraints where K ≥ 2. Unlike most of existing algorithms that are too complex to be applied in practical scenarios, a novel and fast algorithm for establishing multicast routing tree for interclouds is proposed. The proposed algorithm leverages an entropybased process to aggregate all weights into a comprehensive metric, and then uses it to search a multicast tree(MT) on the basis of the shortest path tree(SPT). We conduct complexity analysis and extensive simulations for the proposed algorithm from the approximation perspective. Both analytical and experimental results demonstrate that the algorithm is more efficient than a representative multi-constrained multicast routing algorithm in terms of both speed and accuracy, and thus we believe that the proposed algorithm is applicable to the inter-cloud environment.
文摘The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a decision tree.This article proposes a new approach based on an improved ID3 algorithm.The new algorithm introduces the importance factor λ when calculating the information entropy.It can strengthen the label of important attributes of a tree and reduce the label of non-important attributes.The algorithm overcomes the flaw of the traditional ID3 algorithm which tends to choose the attributes with more values,and also improves the efficiency and flexibility in the process of generating decision trees.
文摘First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.
文摘Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.
文摘This paper provides a method of producing a minimum cost spanning tree (MCST) using set operations. It studies the data structure for implementation of set operations and the algorithm to be applied to this structure and proves the correctness and the complexity of the algorithm. This algorithm uses the FDG (formula to divide elements into groups) to sort (the FDG sorts a sequence of n elements in expected tir O(n)) and uses the method of path compression to find and to unite. Therefore. n produces an MCST of an undirected network having n vertices and e edges in expected time O(eG(n)).
基金Project(50474033)supported by the National Natural Science Foundation of China
文摘To find out all dependency relationships in which metaphors probably exist between syntax constituents in a given sentence,a dependency tree matching algorithm oriented to Chinese metaphor processing is proposed based on a research of unordered tree inclusion matching.In this algorithm,the pattern library is composed of formalization dependency syntax trees that are derived from large-scale metaphor sentences.These kinds of metaphor sentences are saved in the pattern library in advance.The main process of this algorithm is up-down searching and bottom-up backtracking revising.The algorithm discovers potential metaphoric structures in Chinese sentences from metaphoric dependency pattern library.Finally,the feasibility and efficiency of the new matching algorithm are further testified by the results of a series of experiments on dependency pattern library.Hence,accurate dependency relationships can be achieved through this algorithm.
文摘Based on the graphic theory and improved genetic algorithm,an improved genetic algorithm to search the minimum spanning trees is given . The algorithm uses binary code to represent the problem of minimum spanning trees. It designs the corresponding fitness function,operator and few controlling strategies to improve its speed and evolutionary efficiency.Only one solution can be gotten with running traditional al-gorithem atone time.The new algorithm can get a set of the solutions with higher probability in a shorter time.The experiment shows that it has a better performance than traditional methods.