期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GPPre:A Python⁃Based Tool in Grasshopper for Office Building Performance Optimization
1
作者 Hui Ren Shoulong Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第5期47-60,共14页
With the development of the economic and low⁃carbon society,high⁃performance building(HPB)design plays an increasingly important role in the architectural area.The performance of buildings usually includes the buildin... With the development of the economic and low⁃carbon society,high⁃performance building(HPB)design plays an increasingly important role in the architectural area.The performance of buildings usually includes the building energy consumption,building interior natural daylighting,building surface solar radiation,and so on.Building performance simulation(BPS)and multiple objective optimizations(MOO)are becoming the main methods for obtaining a high performance building in the design process.Correspondingly,the BPS and MOO are based on the parametric tools,like Grasshopper and Dynamo.However,these tools are lacking the data analysis module for designers to select the high⁃performance building more conveniently.This paper proposes a toolkit“GPPre”developed based on the Grasshopper platform and Python language.At the end of this paper,a case study was conducted to verify the function of GPPre,which shows that the combination of the sensitivity analysis(SA)and MOO module in the GPPre could aid architects to design the buildings with better performance. 展开更多
关键词 gppre building performance simulation multiple objective optimizations high⁃performance building Python language
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部