Recently,ground-penetrating radar(GPR)has been extended as a well-known area to investigate the subsurface objects.However,its output has a low resolution,and it needs more processing for more interpretation.This pape...Recently,ground-penetrating radar(GPR)has been extended as a well-known area to investigate the subsurface objects.However,its output has a low resolution,and it needs more processing for more interpretation.This paper presents two algorithms for landmine detection from GPR images.The first algorithm depends on a multi-scale technique.A Gaussian kernel with a particular scale is convolved with the image,and after that,two gradients are estimated;horizontal and vertical gradients.Then,histogram and cumulative histogram are estimated for the overall gradient image.The bin values on the cumulative histogram are used for discrimination between images with and without landmines.Moreover,a neural classifier is used to classify images with cumulative histograms as feature vectors.The second algorithm is based on scale-space analysis with the number of speeded-up robust feature(SURF)points as the key parameter for classification.In addition,this paper presents a framework for size reduction of GPR images based on decimation for efficient storage.The further classification steps can be performed on images after interpolation.The sensitivity of classification accuracy to the interpolation process is studied in detail.展开更多
Objects in agricultural soils will seriously affect the farming operations of agricultural machinery.At present,it still relies on human experience to judge abnormal Gounrd-penetrting Radar(GPR)signals.It is difficult...Objects in agricultural soils will seriously affect the farming operations of agricultural machinery.At present,it still relies on human experience to judge abnormal Gounrd-penetrting Radar(GPR)signals.It is difficult for traditional image processing technology to form a general positioning method for the randomness and diversity characteristics of GPR signals in soil.Although many scholars had researched a variety of image-processing techniques,most methods lack robustness.In this study,the deep learning algorithm Mask Region-based Convolutional Neural Network(Mask-RCNN)and a geometric model were combined to improve the GPR positioning accuracy.First,a soil stratification experiment was set to classify the physical parameters of the soil and study the attenuation law of electromagnetic waves.Secondly,a SOIL-GPR geometric model was proposed,which can be combined with Mask-RCNN's MASK geometric size to predict object sizes.The results proved the effectiveness and accuracy of the model for position detection and evaluation of objects in soils;then,the improved Mask RCNN method was used to compare the feature extraction accuracy of U-Net and Fully Convolutional Networks(FCN);Finally,the operating speed of agricultural machinery was simulated and designed the A-B survey line experiment.The detection accuracy was evaluated by several indicators,such as the survey line direction,soil depth false alarm rate,Mean Average Precision(mAP),and Intersection over Union(IoU).The results showed that pixel-level segmentation and positioning based on Mask RCNN can improve the accuracy of the position detection of objects in agricultural soil effectively,and the average error of depth prediction is 2.87 cm.The results showed that the detection technology proposed in this study integrates the advantage of soil environmental parameters,geometric models,and artificial intelligence algorithms to provide a high-precision and technical solution for the GPR non-destructive detection of soils.展开更多
基金This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program。
文摘Recently,ground-penetrating radar(GPR)has been extended as a well-known area to investigate the subsurface objects.However,its output has a low resolution,and it needs more processing for more interpretation.This paper presents two algorithms for landmine detection from GPR images.The first algorithm depends on a multi-scale technique.A Gaussian kernel with a particular scale is convolved with the image,and after that,two gradients are estimated;horizontal and vertical gradients.Then,histogram and cumulative histogram are estimated for the overall gradient image.The bin values on the cumulative histogram are used for discrimination between images with and without landmines.Moreover,a neural classifier is used to classify images with cumulative histograms as feature vectors.The second algorithm is based on scale-space analysis with the number of speeded-up robust feature(SURF)points as the key parameter for classification.In addition,this paper presents a framework for size reduction of GPR images based on decimation for efficient storage.The further classification steps can be performed on images after interpolation.The sensitivity of classification accuracy to the interpolation process is studied in detail.
基金supported by the Laboratory of Lingnan Modern Agriculture Project(Grant No.NT2021009)Guangdong University Key Field(Artificial Intelligence)Special Project(No.2019KZDZX1012)and the 111 Project(D18019)+3 种基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110554)China Postdoctoral Science Foundation(Grant No.2022M721201)the National Natural Science Foundation of China(Grant No.31901411)The Open Competition Program of the Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province(No.2022SDZG03).
文摘Objects in agricultural soils will seriously affect the farming operations of agricultural machinery.At present,it still relies on human experience to judge abnormal Gounrd-penetrting Radar(GPR)signals.It is difficult for traditional image processing technology to form a general positioning method for the randomness and diversity characteristics of GPR signals in soil.Although many scholars had researched a variety of image-processing techniques,most methods lack robustness.In this study,the deep learning algorithm Mask Region-based Convolutional Neural Network(Mask-RCNN)and a geometric model were combined to improve the GPR positioning accuracy.First,a soil stratification experiment was set to classify the physical parameters of the soil and study the attenuation law of electromagnetic waves.Secondly,a SOIL-GPR geometric model was proposed,which can be combined with Mask-RCNN's MASK geometric size to predict object sizes.The results proved the effectiveness and accuracy of the model for position detection and evaluation of objects in soils;then,the improved Mask RCNN method was used to compare the feature extraction accuracy of U-Net and Fully Convolutional Networks(FCN);Finally,the operating speed of agricultural machinery was simulated and designed the A-B survey line experiment.The detection accuracy was evaluated by several indicators,such as the survey line direction,soil depth false alarm rate,Mean Average Precision(mAP),and Intersection over Union(IoU).The results showed that pixel-level segmentation and positioning based on Mask RCNN can improve the accuracy of the position detection of objects in agricultural soil effectively,and the average error of depth prediction is 2.87 cm.The results showed that the detection technology proposed in this study integrates the advantage of soil environmental parameters,geometric models,and artificial intelligence algorithms to provide a high-precision and technical solution for the GPR non-destructive detection of soils.