Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method an...Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.展开更多
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the mode...Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the model of combined GPS/BDS precise point positioning,and then analyzed the convergence speed and short-time(6 h)positioning accuracy.The calculation results show that in static positioning,the average convergence time of GPS is about 50 min,and its horizontal accuracy is better than 2 cm while the vertical accuracy is better than 4 cm.The convergence speed of combined GPS/BDS is about 40 min,and its positioning accuracy is close to that of GPS.In kinematic positioning,the average convergence time of GPS is about 72 min,and its horizontal accuracy is better than 5 cm while the vertical accuracy is better than 12 cm.The average convergence time of GPS/BDS is about 57 min,and its horizontal accuracy is better than 3 cm while the vertical accuracy is better than 9 cm.Combined GPS/BDS has significantly improved the convergence speed,and its positioning accuracy is slightly than that of GPS.展开更多
Global Positioning System data processing is affected by many non-tectonic factors, including the common-mode errors (CME) in station-position time series. The characteristics and origins of CME are still not clear,...Global Positioning System data processing is affected by many non-tectonic factors, including the common-mode errors (CME) in station-position time series. The characteristics and origins of CME are still not clear, due to uneven distribution of global GPS networks and the lack of reliable data of the position time series. In this work, data from 241 continuous GPS stations were reprocessed in a consistent way and the results were compared with those generated at Jet Propulsion Laboratory (JPL). Improvements of residual positions were obtained for many low-quality stations, especially those located in Asia and Australia.展开更多
Combined GPS/GLONASS can increase the accuracy and reliability of positioning especially in some applications with many impediments.Due to the atmosphere delay,the commonly used methods for processing short distance b...Combined GPS/GLONASS can increase the accuracy and reliability of positioning especially in some applications with many impediments.Due to the atmosphere delay,the commonly used methods for processing short distance baselines can not be implemented in long distance baselines.In this paper,a new data processing strategy for long distance baselines is proposed,which uses the properties of some combination observables of combined GPS/GLONASS and distance baselines may come to the order of 10 -8 and combined GPS/GLONASS improves the accuracy over that of GPS_only positioning,which brings benefit to crust deformation monitoring and research on geodynamics.展开更多
This paper introduces the Chinese BeiDou satellite system and its comparison with the actual completed American GPS and the Russian GLONASS systems. The actual BeiDou system consists of 14 satellites covering totally ...This paper introduces the Chinese BeiDou satellite system and its comparison with the actual completed American GPS and the Russian GLONASS systems. The actual BeiDou system consists of 14 satellites covering totally the Asia-Pacific area. A Single Point Positioning (SPP) test has been realised in Changsha, Hunan province, China, to show the advantage of using combined pseudorange solutions from these 3 satellite navigation systems especially in obstructed sites. The test shows that, with an elevation mask angle of 10°, the accuracy is improved by about 20% in horizontal coordinates and nearly 50% in the vertical component using the simultaneous observations of the 3 systems compared to the GPS/GLONASS solution. For the processing with an elevation mask angle of 30°, most of the time less than 4 GPS satellites were available for the GPS-only case and no solution was possible. However, in this difficult situation, the combined GPS/GLONASS/ BeiDou solutions provided an accuracy (rms values) of about 5 m.展开更多
Abnormal effects in GPS broadcast ephemerides can have a significant effect on real-time navigation and positioning solutions that use the orbit and clock error data provided by GPS broadcast ephemerides.This paper de...Abnormal effects in GPS broadcast ephemerides can have a significant effect on real-time navigation and positioning solutions that use the orbit and clock error data provided by GPS broadcast ephemerides.This paper describes three types of non-integerhour navigation data in GPS broadcast ephemeris data.Compared with GPST integer hour data,we find that there are two types of data blocks for non-integer-hour navigation containing gross errors with different levels of precision,which is reflected in the user range accuracy(URA)of the broadcast ephemeris.These gross errors can cause large deviations when using the GPS broadcast ephemeris for orbit calculation and lead to a decrease in the kinematic positioning accuracy.An improved weighting method which is based on the consistency relationship between the URA value and the orbital precision is proposed to improve the positioning accuracy by controlling the effect of gross errors in the broadcast ephemerides.The correction algorithm proposed in this paper was applied to real-time kinematic positioning with shipborne GPS data over the South China Sea.The results showed that the proposed positioning algorithm can effectively reduce the effects of gross errors in the broadcast ephemeris,and significantly improve the accuracy of the navigation and positioning.展开更多
When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the feature...When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.展开更多
In this paper, it is attempted to examine and compare different orientation, one recreational and another more precise, in the performance of two (global positioning system) receivers of forested areas. In doing thi...In this paper, it is attempted to examine and compare different orientation, one recreational and another more precise, in the performance of two (global positioning system) receivers of forested areas. In doing this, a field test on horizontal and vertical positional errors of GPS positioning at different points in the forested area of Taxiarchis-Vrastama University forest was conducted. The two GPS receivers were used to determine the positional accuracy of a selected number of points under tree canopies. Specifically, the precision and accuracy of Garmin's GPS positioning at different points were calculated and compared with the corresponding positioning and accuracy of another GPS system, namely the TOPCON GPS. By the calculation of various measures of accuracy and precision suitable for GPS receivers and the use of statistical methods, accuracy between the different receivers differed significantly is shown. Also, regression analysis revealed that the basal area and the number of available satellites are the most important factors for predicting position error.展开更多
A DGPS positioning model is described, and the elements that influence DGPS positioning precision are analyzed in detail. On this basis, the methods of improving DGPS positioning precision are proposed which include i...A DGPS positioning model is described, and the elements that influence DGPS positioning precision are analyzed in detail. On this basis, the methods of improving DGPS positioning precision are proposed which include increasing updating rate of DGPS correction, building extended DGPS system and improving quality of DGPS correction signal. In the intelligent monitor and control system of the public transport in Beijing, these methods improve the vehicle positioning precision to 2~5m.展开更多
The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used....The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used. For that purpose, GPS observation data during four months at two permanent GPS stations, establishing a 40-km-long baseline as a part of the Montenegrin permanent network(Monte Pos), were used. The study results showed that there is no statistically significant impact of sampling interval changes on epoch-wise variance components related to the residual tropospheric and ionospheric delays(effect a) when it comes to such a baseline. However, it is not the case with epoch-wise variance components related to the interstation-distance-independent residual ‘far-field’ multipath effect(effect b). It turned out that the absolute values of relative differences of standard deviations of the effect a on the relative GPS coordinates(e, n and u) had maximum values 11.1%, 10.2% and 8.9%,respectively. Keeping the same order of presentation for the effect b, the values of 5.9%, 9.9% and 12.5%were obtained. In addition, absolute values of relative differences of standard deviations of horizontal and vertical position had maximum values of 3.8% and 7.7%, respectively.展开更多
Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller...Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller unit(MCU)PIC24FV301.It uses GPRS network to create wireless link and transmits GPS source information which is collected by LEA-5H board to monitor center on the Internet.The monitor center obtains the target information through processing and analysis of the calculated data.Actual operation results indicate that the designed system has excellent performance and achieves the goal of the remote location.展开更多
This paper presents a data processing strategy for GPS kinematic positioning by using a GPS active network to model the GPS errors in double difference observable.Firstly,the double difference residuals are estimated ...This paper presents a data processing strategy for GPS kinematic positioning by using a GPS active network to model the GPS errors in double difference observable.Firstly,the double difference residuals are estimated between the reference stations in the active network.Then the errors at a user station are predicted as the network corrections to user measurements,based on the location of the user.Finally conventional kinematic positioning algorithms can be applied to determine the position of the user station.As an example,continuous 24_hour GPS data in March 2001 has been processed by this method.It clearly demonstrates that,after applying these corrections to a user within the network,both the success rate for ambiguity resolution and the positioning accuracy have been significantly improved.展开更多
A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS r...A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of thecharacteristic, based on TIK-HONOV regularization theorem, a new regularizer is designed to mitigatethe ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (MeanSquared Error Matrix) are obtained, u-sing two epoch single frequency phase data. Combined withLAMBDA method, DEA can fix the integer ambiguities correctly and quickly using MSEM instead of thecovariance matrix of the ambiguities. Compared with the traditional methods, DEA can improve theefficiency obviously in rapid positioning. So, the new algorithm has an extensive applicationoutlook in deformation monitoring, pseudokinematic relative positioning and attitude determination,etc.展开更多
Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning i...Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning is presented herein.Data used for this study refer to the winter and summer periods of the years with minimal(2008)and maximal(2013)solar activity.These data were collected every 30 s in static mode,at two permanent GPS stations located in Montenegro,establishing a mediumdistance(116-km-long)baseline with a height difference of approximately 760 m between its endpoints.The study showed that changing satellite elevation cutoff angle,with a fixed PDOP mask,affects epochwise two-way nested ANOVA estimates of variances related to the‘far-field’multipath(considered as the nested factor herein)and the combined unmodeled effect of tropospheric and ionospheric refraction(considered as the nesting factor herein).However,changing of PDOP mask,with a fixed satellite elevation cutoff angle,doesn’t affect epoch-wise two-way nested ANOVA estimate of variance of the combined unmodeled effect of tropospheric and ionospheric refraction,but,generally,affects the estimate of variance of the‘far-field’multipath(possibly mixed with a part of a‘shorter-term’ionospheric refraction),which is especially pronounced for the summer period.It should also be noted that there is a significant influence of satellite elevation cutoff angle change on both epoch-wise horizontal and vertical position accuracy,only for the summer period,especially in the presence of maximal solar activity,while there is no significant impact of PDOP mask change on epoch-wise positional accuracy.展开更多
This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the To...This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.展开更多
A hybrid positioning system is merely one in which multiple systems are used for positioning purposes. This virtually always, though not necessarily, includes Global Positioning System (GPS) as it is the only global p...A hybrid positioning system is merely one in which multiple systems are used for positioning purposes. This virtually always, though not necessarily, includes Global Positioning System (GPS) as it is the only global positioning network currently. Combination of mobile network and GPS positioning techniques provide a higher accuracy of mobile location than positions based on a standalone GPS or mobile network based positions. High accuracy of mobile position is mainly essential for emergency, military and many other location based services such as productivity enhancement, entertainment, position-based advertising, navigation, asset management and geographic information access. Assisted GPS, also known as A-GPS or AGPS, enhances the performance of the standard GPS in devices connected to the cellular network. This paper introduces a new hybrid technique for mobile location determination utilizing Universal Mobile Telecommunication System (UMTS) network, Mobile Station (MS) and GPS positioning characteristics. Different positioning techniques are chosen according to positioning parameters. The minimum required number of UMTS base stations, location measurement units and GPS satellites are calculated in this paper. The required number of GPS satellites is reduced from four satellites to three ones while using three dimension positioning and from three satellites to two ones at two dimension positioning. Moreover, MS receiver main functions including both network and GPS received paths to achieve output assisted data are discussed. In this paper many drawbacks such as indoor positioning, receiver high power consumption, delay in first time to fix position, low position accuracy as well as large number of required satellites and base stations are improved.展开更多
Baseline observation as well as height measurement is the important content of the quality control of high-rise building construction.In order to strengthen the quality of construction projects,meet the requirement of...Baseline observation as well as height measurement is the important content of the quality control of high-rise building construction.In order to strengthen the quality of construction projects,meet the requirement of completion time,improve the accuracy and efficiency of locating observation and explore a scientific way of observation suitable for high-rise building construction,this paper studies the design and implementation of high-rise building construction based on GPS positioning technology.展开更多
The positioning accuracy of a short-haul target-locating system,the inverse-GPS(IGPS) ,was analyzed in detail. The relationship between IGPS and the positioning error was discussed. The multiplicative error minimal bo...The positioning accuracy of a short-haul target-locating system,the inverse-GPS(IGPS) ,was analyzed in detail. The relationship between IGPS and the positioning error was discussed. The multiplicative error minimal bound of the geometric dilution of precision (GDOP) about the four-base-station IGPS was also investigated. In order to clarify the practical implementation of IGPS,the multiplicative and additive error factors which affect the positioning accuracy and theoretical estimation of positioning accuracy were presented. By analyzing the experiments of locating a target's position in virtual three-dimensional areas,the positioning performance of IGPS was illustrated. The results show that the multiplicative and additive error factors should be eliminated in IGPS to improve the positioning accuracy.展开更多
基金supported partially by the National Natural Science Foundation of China(No.40974004 and 40974016)the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG,China(No.2011A01)the Key Laboratory of Advanced Surveying Engineering of NASMG,China(No.TJES1101)
文摘Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.
基金supported by Director Foundation of the Institute of Seismology,China Earthquake Administration(6110).
文摘Combining the observation data from five Multi-GNSS Experiment(MGEX)stations with the precise orbit and clock products from Global Positioning System(GPS)and BeiDou Navigation Satellite System(BDS),we studied the model of combined GPS/BDS precise point positioning,and then analyzed the convergence speed and short-time(6 h)positioning accuracy.The calculation results show that in static positioning,the average convergence time of GPS is about 50 min,and its horizontal accuracy is better than 2 cm while the vertical accuracy is better than 4 cm.The convergence speed of combined GPS/BDS is about 40 min,and its positioning accuracy is close to that of GPS.In kinematic positioning,the average convergence time of GPS is about 72 min,and its horizontal accuracy is better than 5 cm while the vertical accuracy is better than 12 cm.The average convergence time of GPS/BDS is about 57 min,and its horizontal accuracy is better than 3 cm while the vertical accuracy is better than 9 cm.Combined GPS/BDS has significantly improved the convergence speed,and its positioning accuracy is slightly than that of GPS.
基金supported by the Institute of Crustal Dynamics Fund(ZDJ2009-01)National Natural Science Foundation of China(41104001)
文摘Global Positioning System data processing is affected by many non-tectonic factors, including the common-mode errors (CME) in station-position time series. The characteristics and origins of CME are still not clear, due to uneven distribution of global GPS networks and the lack of reliable data of the position time series. In this work, data from 241 continuous GPS stations were reprocessed in a consistent way and the results were compared with those generated at Jet Propulsion Laboratory (JPL). Improvements of residual positions were obtained for many low-quality stations, especially those located in Asia and Australia.
文摘Combined GPS/GLONASS can increase the accuracy and reliability of positioning especially in some applications with many impediments.Due to the atmosphere delay,the commonly used methods for processing short distance baselines can not be implemented in long distance baselines.In this paper,a new data processing strategy for long distance baselines is proposed,which uses the properties of some combination observables of combined GPS/GLONASS and distance baselines may come to the order of 10 -8 and combined GPS/GLONASS improves the accuracy over that of GPS_only positioning,which brings benefit to crust deformation monitoring and research on geodynamics.
文摘This paper introduces the Chinese BeiDou satellite system and its comparison with the actual completed American GPS and the Russian GLONASS systems. The actual BeiDou system consists of 14 satellites covering totally the Asia-Pacific area. A Single Point Positioning (SPP) test has been realised in Changsha, Hunan province, China, to show the advantage of using combined pseudorange solutions from these 3 satellite navigation systems especially in obstructed sites. The test shows that, with an elevation mask angle of 10°, the accuracy is improved by about 20% in horizontal coordinates and nearly 50% in the vertical component using the simultaneous observations of the 3 systems compared to the GPS/GLONASS solution. For the processing with an elevation mask angle of 30°, most of the time less than 4 GPS satellites were available for the GPS-only case and no solution was possible. However, in this difficult situation, the combined GPS/GLONASS/ BeiDou solutions provided an accuracy (rms values) of about 5 m.
基金The authors would like to thank to Second Institute of Oceanography for the marine GPS data in the South China Sea.And this study is under the support by the National Key Research and Development Program of China(2016YFB0501701 and 2016YFB0501900).National Natural Science Foundation of China(Grant Nos.41574013 and 41874032)and the Funded by the State Key Laboratory of Geo-information Engineering(SKLGIE2016-M-1-1).
文摘Abnormal effects in GPS broadcast ephemerides can have a significant effect on real-time navigation and positioning solutions that use the orbit and clock error data provided by GPS broadcast ephemerides.This paper describes three types of non-integerhour navigation data in GPS broadcast ephemeris data.Compared with GPST integer hour data,we find that there are two types of data blocks for non-integer-hour navigation containing gross errors with different levels of precision,which is reflected in the user range accuracy(URA)of the broadcast ephemeris.These gross errors can cause large deviations when using the GPS broadcast ephemeris for orbit calculation and lead to a decrease in the kinematic positioning accuracy.An improved weighting method which is based on the consistency relationship between the URA value and the orbital precision is proposed to improve the positioning accuracy by controlling the effect of gross errors in the broadcast ephemerides.The correction algorithm proposed in this paper was applied to real-time kinematic positioning with shipborne GPS data over the South China Sea.The results showed that the proposed positioning algorithm can effectively reduce the effects of gross errors in the broadcast ephemeris,and significantly improve the accuracy of the navigation and positioning.
基金National Natural Science Foundation of China(Nos.61662070,61363059)Youth Science Fund Project of Lanzhou Jiaotong University(No.2018036)。
文摘When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.
文摘In this paper, it is attempted to examine and compare different orientation, one recreational and another more precise, in the performance of two (global positioning system) receivers of forested areas. In doing this, a field test on horizontal and vertical positional errors of GPS positioning at different points in the forested area of Taxiarchis-Vrastama University forest was conducted. The two GPS receivers were used to determine the positional accuracy of a selected number of points under tree canopies. Specifically, the precision and accuracy of Garmin's GPS positioning at different points were calculated and compared with the corresponding positioning and accuracy of another GPS system, namely the TOPCON GPS. By the calculation of various measures of accuracy and precision suitable for GPS receivers and the use of statistical methods, accuracy between the different receivers differed significantly is shown. Also, regression analysis revealed that the basal area and the number of available satellites are the most important factors for predicting position error.
文摘A DGPS positioning model is described, and the elements that influence DGPS positioning precision are analyzed in detail. On this basis, the methods of improving DGPS positioning precision are proposed which include increasing updating rate of DGPS correction, building extended DGPS system and improving quality of DGPS correction signal. In the intelligent monitor and control system of the public transport in Beijing, these methods improve the vehicle positioning precision to 2~5m.
文摘The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used. For that purpose, GPS observation data during four months at two permanent GPS stations, establishing a 40-km-long baseline as a part of the Montenegrin permanent network(Monte Pos), were used. The study results showed that there is no statistically significant impact of sampling interval changes on epoch-wise variance components related to the residual tropospheric and ionospheric delays(effect a) when it comes to such a baseline. However, it is not the case with epoch-wise variance components related to the interstation-distance-independent residual ‘far-field’ multipath effect(effect b). It turned out that the absolute values of relative differences of standard deviations of the effect a on the relative GPS coordinates(e, n and u) had maximum values 11.1%, 10.2% and 8.9%,respectively. Keeping the same order of presentation for the effect b, the values of 5.9%, 9.9% and 12.5%were obtained. In addition, absolute values of relative differences of standard deviations of horizontal and vertical position had maximum values of 3.8% and 7.7%, respectively.
文摘Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller unit(MCU)PIC24FV301.It uses GPRS network to create wireless link and transmits GPS source information which is collected by LEA-5H board to monitor center on the Internet.The monitor center obtains the target information through processing and analysis of the calculated data.Actual operation results indicate that the designed system has excellent performance and achieves the goal of the remote location.
文摘This paper presents a data processing strategy for GPS kinematic positioning by using a GPS active network to model the GPS errors in double difference observable.Firstly,the double difference residuals are estimated between the reference stations in the active network.Then the errors at a user station are predicted as the network corrections to user measurements,based on the location of the user.Finally conventional kinematic positioning algorithms can be applied to determine the position of the user station.As an example,continuous 24_hour GPS data in March 2001 has been processed by this method.It clearly demonstrates that,after applying these corrections to a user within the network,both the success rate for ambiguity resolution and the positioning accuracy have been significantly improved.
文摘A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of thecharacteristic, based on TIK-HONOV regularization theorem, a new regularizer is designed to mitigatethe ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (MeanSquared Error Matrix) are obtained, u-sing two epoch single frequency phase data. Combined withLAMBDA method, DEA can fix the integer ambiguities correctly and quickly using MSEM instead of thecovariance matrix of the ambiguities. Compared with the traditional methods, DEA can improve theefficiency obviously in rapid positioning. So, the new algorithm has an extensive applicationoutlook in deformation monitoring, pseudokinematic relative positioning and attitude determination,etc.
文摘Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning is presented herein.Data used for this study refer to the winter and summer periods of the years with minimal(2008)and maximal(2013)solar activity.These data were collected every 30 s in static mode,at two permanent GPS stations located in Montenegro,establishing a mediumdistance(116-km-long)baseline with a height difference of approximately 760 m between its endpoints.The study showed that changing satellite elevation cutoff angle,with a fixed PDOP mask,affects epochwise two-way nested ANOVA estimates of variances related to the‘far-field’multipath(considered as the nested factor herein)and the combined unmodeled effect of tropospheric and ionospheric refraction(considered as the nesting factor herein).However,changing of PDOP mask,with a fixed satellite elevation cutoff angle,doesn’t affect epoch-wise two-way nested ANOVA estimate of variance of the combined unmodeled effect of tropospheric and ionospheric refraction,but,generally,affects the estimate of variance of the‘far-field’multipath(possibly mixed with a part of a‘shorter-term’ionospheric refraction),which is especially pronounced for the summer period.It should also be noted that there is a significant influence of satellite elevation cutoff angle change on both epoch-wise horizontal and vertical position accuracy,only for the summer period,especially in the presence of maximal solar activity,while there is no significant impact of PDOP mask change on epoch-wise positional accuracy.
文摘This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.
文摘A hybrid positioning system is merely one in which multiple systems are used for positioning purposes. This virtually always, though not necessarily, includes Global Positioning System (GPS) as it is the only global positioning network currently. Combination of mobile network and GPS positioning techniques provide a higher accuracy of mobile location than positions based on a standalone GPS or mobile network based positions. High accuracy of mobile position is mainly essential for emergency, military and many other location based services such as productivity enhancement, entertainment, position-based advertising, navigation, asset management and geographic information access. Assisted GPS, also known as A-GPS or AGPS, enhances the performance of the standard GPS in devices connected to the cellular network. This paper introduces a new hybrid technique for mobile location determination utilizing Universal Mobile Telecommunication System (UMTS) network, Mobile Station (MS) and GPS positioning characteristics. Different positioning techniques are chosen according to positioning parameters. The minimum required number of UMTS base stations, location measurement units and GPS satellites are calculated in this paper. The required number of GPS satellites is reduced from four satellites to three ones while using three dimension positioning and from three satellites to two ones at two dimension positioning. Moreover, MS receiver main functions including both network and GPS received paths to achieve output assisted data are discussed. In this paper many drawbacks such as indoor positioning, receiver high power consumption, delay in first time to fix position, low position accuracy as well as large number of required satellites and base stations are improved.
文摘Baseline observation as well as height measurement is the important content of the quality control of high-rise building construction.In order to strengthen the quality of construction projects,meet the requirement of completion time,improve the accuracy and efficiency of locating observation and explore a scientific way of observation suitable for high-rise building construction,this paper studies the design and implementation of high-rise building construction based on GPS positioning technology.
基金Sponsored by the Cooperation Building Foundation Project of Beijing Education Committee (Grant No. SYS100070522)
文摘The positioning accuracy of a short-haul target-locating system,the inverse-GPS(IGPS) ,was analyzed in detail. The relationship between IGPS and the positioning error was discussed. The multiplicative error minimal bound of the geometric dilution of precision (GDOP) about the four-base-station IGPS was also investigated. In order to clarify the practical implementation of IGPS,the multiplicative and additive error factors which affect the positioning accuracy and theoretical estimation of positioning accuracy were presented. By analyzing the experiments of locating a target's position in virtual three-dimensional areas,the positioning performance of IGPS was illustrated. The results show that the multiplicative and additive error factors should be eliminated in IGPS to improve the positioning accuracy.