Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method an...Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.展开更多
A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消...为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。展开更多
基金supported partially by the National Natural Science Foundation of China(No.40974004 and 40974016)the Key Laboratory of Surveying and Mapping Technology on Island and Reef of NASMG,China(No.2011A01)the Key Laboratory of Advanced Surveying Engineering of NASMG,China(No.TJES1101)
文摘Crustal deformation can provide constraints for studying earthquake rupture and shock wave transmission for the Mw9.0 eastern Japan great earthquake. Using the single- epoch precise point positioning (PPP) method and the appropriate positioning flow, we process GPS data from six IGS (International GNSS Service) sites (e.g., MIZU, TSK2, USUD, MTKA, AIRA and KSMV) located in Japan and obtain the positioning results with centimeter scale precision. The displacement time series of the six sites are analyzed using the least squares spectral analysis method to estimate deformations caused by the Mw9.0 mainshock and the Mw7.9 aftershock, and the cumulative displacements after 1 day. Mainshock displacements at station MIZU, the nearest site to the mainshock in the North (N), East (E), and Up (U) directions, are -1.202 m, 2.180 m and -0.104 m, respectively, and the cumulative deformations after 1 day are -1.117 m, 2.071 m and -0.072 m, respectively. The displacements at station KSMV, the nearest site to the Mw7.9 aftershock in the N, E and U directions, are -0.032 m, 0.742 m and -0.345 m, respectively. The other sites obviously experienced eastern movements and subsidence. The deformation vectors indicate that the horizontal displacements caused by the earthquake point to the epicenter and rupture. Elastic bounds evidently took place at all sites. The results indicate that the crustal movements and earthquake were part of a megathrust caused by the Pacific Plate sinking under the North American Plate to the northeast of Japan island arc.
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.
文摘为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。