The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used....The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used. For that purpose, GPS observation data during four months at two permanent GPS stations, establishing a 40-km-long baseline as a part of the Montenegrin permanent network(Monte Pos), were used. The study results showed that there is no statistically significant impact of sampling interval changes on epoch-wise variance components related to the residual tropospheric and ionospheric delays(effect a) when it comes to such a baseline. However, it is not the case with epoch-wise variance components related to the interstation-distance-independent residual ‘far-field’ multipath effect(effect b). It turned out that the absolute values of relative differences of standard deviations of the effect a on the relative GPS coordinates(e, n and u) had maximum values 11.1%, 10.2% and 8.9%,respectively. Keeping the same order of presentation for the effect b, the values of 5.9%, 9.9% and 12.5%were obtained. In addition, absolute values of relative differences of standard deviations of horizontal and vertical position had maximum values of 3.8% and 7.7%, respectively.展开更多
Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning i...Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning is presented herein.Data used for this study refer to the winter and summer periods of the years with minimal(2008)and maximal(2013)solar activity.These data were collected every 30 s in static mode,at two permanent GPS stations located in Montenegro,establishing a mediumdistance(116-km-long)baseline with a height difference of approximately 760 m between its endpoints.The study showed that changing satellite elevation cutoff angle,with a fixed PDOP mask,affects epochwise two-way nested ANOVA estimates of variances related to the‘far-field’multipath(considered as the nested factor herein)and the combined unmodeled effect of tropospheric and ionospheric refraction(considered as the nesting factor herein).However,changing of PDOP mask,with a fixed satellite elevation cutoff angle,doesn’t affect epoch-wise two-way nested ANOVA estimate of variance of the combined unmodeled effect of tropospheric and ionospheric refraction,but,generally,affects the estimate of variance of the‘far-field’multipath(possibly mixed with a part of a‘shorter-term’ionospheric refraction),which is especially pronounced for the summer period.It should also be noted that there is a significant influence of satellite elevation cutoff angle change on both epoch-wise horizontal and vertical position accuracy,only for the summer period,especially in the presence of maximal solar activity,while there is no significant impact of PDOP mask change on epoch-wise positional accuracy.展开更多
When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the feature...When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.展开更多
This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the ...This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the weak point on position estimation by the merits of GPS and INS.In general,extended Kalman filter(EKF)has been widely used in order to combine GPS with INS.However,UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear,irregular distribution errors.In this paper,the accuracy of UPF is proved through the simulation experiment,using the virtual-data needed for the test.展开更多
A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS r...A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of thecharacteristic, based on TIK-HONOV regularization theorem, a new regularizer is designed to mitigatethe ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (MeanSquared Error Matrix) are obtained, u-sing two epoch single frequency phase data. Combined withLAMBDA method, DEA can fix the integer ambiguities correctly and quickly using MSEM instead of thecovariance matrix of the ambiguities. Compared with the traditional methods, DEA can improve theefficiency obviously in rapid positioning. So, the new algorithm has an extensive applicationoutlook in deformation monitoring, pseudokinematic relative positioning and attitude determination,etc.展开更多
Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller...Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller unit(MCU)PIC24FV301.It uses GPRS network to create wireless link and transmits GPS source information which is collected by LEA-5H board to monitor center on the Internet.The monitor center obtains the target information through processing and analysis of the calculated data.Actual operation results indicate that the designed system has excellent performance and achieves the goal of the remote location.展开更多
An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken ...An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.展开更多
An efficient cycle slip detection method is proposed for high precision positioning and navigation results with global positioning system (GPS),which is based on the assumption of a high sampling interval, measureme...An efficient cycle slip detection method is proposed for high precision positioning and navigation results with global positioning system (GPS),which is based on the assumption of a high sampling interval, measurement errors are so small that they can be ignored in the temporal single difference observables. And ambiguities are ordinarily equal to zero,but could be the number of cycles that have "slipped" if loss-of-lock has occurred.Therefore,cycle slips are estimated as parameters of time-relative positioning observation equations.Because the temporal single difference observables are taken at different epochs and different stations with a single GPS receiver,if time-relative positioning observation equations are linearized as that of conventional relative positioning,the design matrix will be rank defective.To obtain a stable linearization scheme,time-relative positioning observation equations are further analyzed,and the concept of virtual measurement is applied.A sample of data collected on a vehicle test shows that a cycle slip detection approach based on time-relative positioning theory can detect slips at the value of one cycle.The results also indicate if two satellites are so near to each other that they have the same equivalent to satellite-receiver geometry,cycle slip detection will be difficult and may get wrong results.Cycle slips of different satellites also affect detection by satellite-receiver geometry.展开更多
When the deformation of landslide becomes larger, the conventional static GPS surveying cannot satisfy the real-time requirement in landslide monitoring. In this paper we present a new method for single epoch GPS posi...When the deformation of landslide becomes larger, the conventional static GPS surveying cannot satisfy the real-time requirement in landslide monitoring. In this paper we present a new method for single epoch GPS posi- tioning combining with the accuracy of approximate coordinates of monitored station in landslide monitoring. This algorithm does not consider troublesome cycle-slip problem of carrier phase, and integer ambiguities can be solved at a single epoch, so the centimeter level accurate coordinates can be calculated instantaneously. By means of fil- tering or smoothing, this method can be extended to detect millimeter level deformation and velocity. In order to test the new method, low-cost single frequency receivers have been used in a real landslide, which happened in Jiangxi Province, China.展开更多
In conventional aerial photogrammetry, the high accurate photogrammetric point determination is always carried out by aerotriangulation using a great deal of ground control points around the perimeter and in the cente...In conventional aerial photogrammetry, the high accurate photogrammetric point determination is always carried out by aerotriangulation using a great deal of ground control points around the perimeter and in the center of block area because the exterior orien- tation parameters of aerial photographs are unknown. A technological revolution in pho- togrammetry has taken place since Navstar global positioning system (GPS) was applied to determine the 3D coordinates of exposure station positions during the photo flight missions. GPS-supported aerotriangulation is conducted by a combined bundle adjustment for pho- togrammetric observations and the camera orientation data. In this case, the essential ground control points are replaced by GPS-determined camera positions. Recent investigations show this method is coming to the practice. We have been engaged in the theoretical studies, soft- ware development, and related experiments and production in the field since 1990. So far the abundant research achievements are obtained in terms of the theory and application. In this paper,we first derives the mathematical model of GPS-supported aerotriangulation from the geometry between camera and airborne GPS antenna, then describes briefly a software pack- age WuCAPS (Wuhan combined adjustment program system) developed newly by the au- thor,which serves the purpose of the combined bundle adjustment for photogrammetric and non-photogrammetric observations. At the end of the present work, a set of actual aerial pho- tographs,at the image scale of 1: 34 000, with airborne GPS data taken from Tianjing site, China were processed by WuCAPS. The empirical results have verified that the accuracy of the combined bundle adjustment with 4 XYZ ground control points around the corners of block area is very close to that of the conventional bundle adjustment with 3 additional pa- rameters, that leads to reduce 88% field survey and 75% production cost, and can meet the specification of topographic mapping at small or medium scale by GPS-supported aerotriangu- lation without ground control. This shows the ample applicability and the economic benefit of kinematic GPS relative positioning in high accurate photogrammetric point determination.展开更多
This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, includ...This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, including land-coverclassification and change detection, wetland evolutionary processes, landscape-change analyses, channel migration, flood and wetlands resource monitoring and spatial quantitative analyses/modeling, ecosystem service evaluation, ecological processes and risk assessments, disease control, water quality monitoring/modeling, pollution monitoring/modeling, wetlands hydrology, wetland information systems and WebGIS. The limitations and needs for optimal use of these technologies are discussed, such as the limited advanced technical knowledge and skills, low awareness and capacity, unclear link between GIS output and policy making, lack of supporting policies and standards, lack of a wetlands geo-information networklimite, and the use of these techniques in wetland research. It is suggested that for realising true applications of RS, GIS and GPS technologies, the availability, accessibility, reliability, homogeneity, and continuity of wetlands-related geo-information enabling environment, policies and standards, and funding are needed.展开更多
On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites...On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.展开更多
Continuous observation data from 24 GPS stations are selected in the area (33.0°N-41.0°N, 95.0°E-105.0°E) for this study (the period is from Jan. 1, 2015 to Jan. 20, 2016). Three components, NS...Continuous observation data from 24 GPS stations are selected in the area (33.0°N-41.0°N, 95.0°E-105.0°E) for this study (the period is from Jan. 1, 2015 to Jan. 20, 2016). Three components, NS, EW and UD, of the daily solutions are filtered by the Hilbert-Huang transform (HHT) with frequency band of 5.787×10^-7-7.716 ×10^-8 Hz (20-150 days in period). And short-term dynamic characteristics of micro displacement before Menyuan M6.4 earthquake are studied by using the temporal dependencies and cross spectrum analysis. The results show that before the earthquake the horizontal undulatory motions are higher than the average level in the series data which indicate the disturbance feature of regional stress before the earthquake. Three GPS stations on Qinghai-Tibet Plateau with their setting perpendicular to the seismogenic fault have consistent movement. The increase of amplitude of the horizontal micro motion observed before the quake is conducive to the earthquake occurrence. However, we could not be sure if the undulatory motion triggered the earthquake. It is quite necessary to build more GPS continuous observation stations and optimize the monitoring network so as to improve the understanding of the shortterm dynamic crustal variation before earthquake.展开更多
Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial nav...Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial navigation system (INS) information and almanac data and reducing the searching area. The traditional fast acquisition is analyzed, the fast acquisition of the GPS receiver aided is presented by INS information, and the signal is fine captured by spectrum zooming. Then the algorithm is simulated by sampled GPS intermediate frequency (IF) signal and the result verifies that this acquisition can dramatically improve the capability of GPS receiver and reduce its acquisition time.展开更多
For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ...For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.展开更多
In the present reported study, the vertical distributions of local atmospheric refractivity were retrieved from ground- based GPS observations at low elevation angles. An improved optimization method was implemented a...In the present reported study, the vertical distributions of local atmospheric refractivity were retrieved from ground- based GPS observations at low elevation angles. An improved optimization method was implemented at altitudes of 0-10 km to search for a best-fit refractivity profile that resulted in atmospheric delays most similar to the delays calculated from the observations. A ray-tracing model was used to simulate neutral atmospheric delays corresponding to a given refractivity profile. We initially performed a "theoretical retrieval", in which no observation data were involved, to verify the optimization method. A statistical relative error of this "theoretical retrieval" (-2% to 2%) indicated that such a retrieval is effective. In a practical retrieval, observations were obtained using a dual-frequency GPS receiver, and its initial value was provided by CIRA86aQ_UoG data. The statistical relative errors of the practical retrieval range from -3% to 5% were compared with co-located radiosonde measurements, Results clearly revealed diurnal variations in local refractivity prc,files, The results also suggest that the general vertical distribution of refractivity can be derived with a high temporal resolution. However, further study is needed to describe the vertical refractivity gradient clearly.展开更多
A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this papers the roles of moisture in the genesis ...A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this papers the roles of moisture in the genesis and development of the squall line were studied. Based on the precipitable water vapor (PWV) data from a ground-based GPS network over the Yangtze River Delta in China, plus data from a Pennsylvania State University/National Atmospheric Center (PSU/NCAR) mesoscale model (MM5) simulation, initialized by three-dimensional variational (3D-VAR) assimilation of the PWV data, some interesting features are revealed. During the 12 hours prior to the squall line arriving in the Shanghai area, a significant increase in PWV indicates a favorable moist environment for a squall line to develop. The vertical profile of the moisture illustrates that it mainly increased in the middle levels of the troposphere, and not at the surface. Temporal variation in PWV is a better precursor for squall line development than other surface meteorological parameters. The characteristics of the horizontal distribution of PWV not only indicated a favorable moist environment, but also evolved a cyclonic wind field for a squall line genesis and development. The "+2 mm" contours of the three-hourly PWV variation can be used successfully to predict the location of the squall line two hours later.展开更多
Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantag...Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared witb their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.展开更多
To better understand the mechanism of the Mw6.3 L'Aquila (Central Italy) earthquake occurred in 2009, global positioning system (GPS) and interferometric synthetic aperture radar (InSAR) data were used to deriv...To better understand the mechanism of the Mw6.3 L'Aquila (Central Italy) earthquake occurred in 2009, global positioning system (GPS) and interferometric synthetic aperture radar (InSAR) data were used to derive the coseismic slip distribution of the earthquake fault. Firstly, based on the homogeneous elastic half-space model, the fault geometric parameters were solved by the genetic algorithm. The best fitting model shows that the fault is a 13.7 km×14.1 km rectangular fault, in 139.3° strike direction and 50.2° southwest-dipping. Secondly, fixing the optimal fault geometric parameters, the fault plane was extended and discretized into 16× 16 patches, each with a size of 1 kmx 1 krn, and the non-uniform slip distribution of the fault was inverted by the steepest descent method with an appropriate smoothing ratio based on the layered crustal structure model. The preferred solution shows that the fault is mainly a normal fault with slight right-lateral strike slip, the maximum slip of 1.01 m is located in the depth of 8.28 km, the average rake is -100.9°, and the total geodetic moment is about 3.34× 1018 N.m (Mw 6.28). The results are much closer than previous studies in comparison with the seismological estimation. These demonstrate that the coseismic fault slip distribution of the L'Aauila earthauake inverted by the crustal model considering layered characters is reliable.展开更多
文摘The study presents sampling interval impacts on variance components of the epoch-wise residual errors in relative GPS positioning. In the variance components estimation process, the 2-way nested ANOVA method was used. For that purpose, GPS observation data during four months at two permanent GPS stations, establishing a 40-km-long baseline as a part of the Montenegrin permanent network(Monte Pos), were used. The study results showed that there is no statistically significant impact of sampling interval changes on epoch-wise variance components related to the residual tropospheric and ionospheric delays(effect a) when it comes to such a baseline. However, it is not the case with epoch-wise variance components related to the interstation-distance-independent residual ‘far-field’ multipath effect(effect b). It turned out that the absolute values of relative differences of standard deviations of the effect a on the relative GPS coordinates(e, n and u) had maximum values 11.1%, 10.2% and 8.9%,respectively. Keeping the same order of presentation for the effect b, the values of 5.9%, 9.9% and 12.5%were obtained. In addition, absolute values of relative differences of standard deviations of horizontal and vertical position had maximum values of 3.8% and 7.7%, respectively.
文摘Impact of satellite elevation cutoff angle and position dilution of precision(PDOP)mask change on epoch-wise variance components of unmodeled effects that accompany relative Global Positioning System(GPS)positioning is presented herein.Data used for this study refer to the winter and summer periods of the years with minimal(2008)and maximal(2013)solar activity.These data were collected every 30 s in static mode,at two permanent GPS stations located in Montenegro,establishing a mediumdistance(116-km-long)baseline with a height difference of approximately 760 m between its endpoints.The study showed that changing satellite elevation cutoff angle,with a fixed PDOP mask,affects epochwise two-way nested ANOVA estimates of variances related to the‘far-field’multipath(considered as the nested factor herein)and the combined unmodeled effect of tropospheric and ionospheric refraction(considered as the nesting factor herein).However,changing of PDOP mask,with a fixed satellite elevation cutoff angle,doesn’t affect epoch-wise two-way nested ANOVA estimate of variance of the combined unmodeled effect of tropospheric and ionospheric refraction,but,generally,affects the estimate of variance of the‘far-field’multipath(possibly mixed with a part of a‘shorter-term’ionospheric refraction),which is especially pronounced for the summer period.It should also be noted that there is a significant influence of satellite elevation cutoff angle change on both epoch-wise horizontal and vertical position accuracy,only for the summer period,especially in the presence of maximal solar activity,while there is no significant impact of PDOP mask change on epoch-wise positional accuracy.
基金National Natural Science Foundation of China(Nos.61662070,61363059)Youth Science Fund Project of Lanzhou Jiaotong University(No.2018036)。
文摘When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.
基金The MKE(the Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency) (NIPA-2012-H0301-12-2006)
文摘This paper proposes a technique that global positioning system(GPS)combines inertial navigation system(INS)by using unscented particle filter(UPF)to estimate the exact outdoor position.This system can make up for the weak point on position estimation by the merits of GPS and INS.In general,extended Kalman filter(EKF)has been widely used in order to combine GPS with INS.However,UPF can get the position more accurately and correctly than EKF when it is applied to real-system included non-linear,irregular distribution errors.In this paper,the accuracy of UPF is proved through the simulation experiment,using the virtual-data needed for the test.
文摘A new algorithm, called as Double-Epoch Algorithm CDEA) is proposed in GPSrapid positioning using two epoch single frequency phase data in this paper. Firstly, the structurecharacteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of thecharacteristic, based on TIK-HONOV regularization theorem, a new regularizer is designed to mitigatethe ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (MeanSquared Error Matrix) are obtained, u-sing two epoch single frequency phase data. Combined withLAMBDA method, DEA can fix the integer ambiguities correctly and quickly using MSEM instead of thecovariance matrix of the ambiguities. Compared with the traditional methods, DEA can improve theefficiency obviously in rapid positioning. So, the new algorithm has an extensive applicationoutlook in deformation monitoring, pseudokinematic relative positioning and attitude determination,etc.
文摘Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller unit(MCU)PIC24FV301.It uses GPRS network to create wireless link and transmits GPS source information which is collected by LEA-5H board to monitor center on the Internet.The monitor center obtains the target information through processing and analysis of the calculated data.Actual operation results indicate that the designed system has excellent performance and achieves the goal of the remote location.
基金Project(51174206)supported by the National Natural Science Foundation of ChinaProject(2013AA12A201)supported by the National Hi-tech Research and Development Program of China+1 种基金Project(2012ZDP08)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘An altemative algorithm for mitigating GPS multipath was presented by integrating unscented Kalman filter (UKF) and wavelet transform with particle filter. Within consideration of particle degeneracy, UKF was taken for drawing particle. To remove the noise from raw data and data processing error, adaptive wavelet filtering with threshold was adopted while data preprocessing and drawing particle. Three algorithms, named EKF-PF, UKF-PF and WM-UKF-PF, were performed for comparison. The proposed WM-UKF-PF algorithm gives better error minimization, and significantly improves performance of multipath mitigation in terms of SNR and coefficient even though it has computation complexity. It is of significance for high-accuracy positioning and non-stationary deformation analysis.
文摘An efficient cycle slip detection method is proposed for high precision positioning and navigation results with global positioning system (GPS),which is based on the assumption of a high sampling interval, measurement errors are so small that they can be ignored in the temporal single difference observables. And ambiguities are ordinarily equal to zero,but could be the number of cycles that have "slipped" if loss-of-lock has occurred.Therefore,cycle slips are estimated as parameters of time-relative positioning observation equations.Because the temporal single difference observables are taken at different epochs and different stations with a single GPS receiver,if time-relative positioning observation equations are linearized as that of conventional relative positioning,the design matrix will be rank defective.To obtain a stable linearization scheme,time-relative positioning observation equations are further analyzed,and the concept of virtual measurement is applied.A sample of data collected on a vehicle test shows that a cycle slip detection approach based on time-relative positioning theory can detect slips at the value of one cycle.The results also indicate if two satellites are so near to each other that they have the same equivalent to satellite-receiver geometry,cycle slip detection will be difficult and may get wrong results.Cycle slips of different satellites also affect detection by satellite-receiver geometry.
基金Open Foundation of Key Laboratory of Dynamic Geodesy, Chinese Academy of Sciences (L04-07), National Natural Science Foundation of China (40474010) and Project of Science and Technology Bureau of Sichuan Province (02GG006-048).
文摘When the deformation of landslide becomes larger, the conventional static GPS surveying cannot satisfy the real-time requirement in landslide monitoring. In this paper we present a new method for single epoch GPS posi- tioning combining with the accuracy of approximate coordinates of monitored station in landslide monitoring. This algorithm does not consider troublesome cycle-slip problem of carrier phase, and integer ambiguities can be solved at a single epoch, so the centimeter level accurate coordinates can be calculated instantaneously. By means of fil- tering or smoothing, this method can be extended to detect millimeter level deformation and velocity. In order to test the new method, low-cost single frequency receivers have been used in a real landslide, which happened in Jiangxi Province, China.
文摘In conventional aerial photogrammetry, the high accurate photogrammetric point determination is always carried out by aerotriangulation using a great deal of ground control points around the perimeter and in the center of block area because the exterior orien- tation parameters of aerial photographs are unknown. A technological revolution in pho- togrammetry has taken place since Navstar global positioning system (GPS) was applied to determine the 3D coordinates of exposure station positions during the photo flight missions. GPS-supported aerotriangulation is conducted by a combined bundle adjustment for pho- togrammetric observations and the camera orientation data. In this case, the essential ground control points are replaced by GPS-determined camera positions. Recent investigations show this method is coming to the practice. We have been engaged in the theoretical studies, soft- ware development, and related experiments and production in the field since 1990. So far the abundant research achievements are obtained in terms of the theory and application. In this paper,we first derives the mathematical model of GPS-supported aerotriangulation from the geometry between camera and airborne GPS antenna, then describes briefly a software pack- age WuCAPS (Wuhan combined adjustment program system) developed newly by the au- thor,which serves the purpose of the combined bundle adjustment for photogrammetric and non-photogrammetric observations. At the end of the present work, a set of actual aerial pho- tographs,at the image scale of 1: 34 000, with airborne GPS data taken from Tianjing site, China were processed by WuCAPS. The empirical results have verified that the accuracy of the combined bundle adjustment with 4 XYZ ground control points around the corners of block area is very close to that of the conventional bundle adjustment with 3 additional pa- rameters, that leads to reduce 88% field survey and 75% production cost, and can meet the specification of topographic mapping at small or medium scale by GPS-supported aerotriangu- lation without ground control. This shows the ample applicability and the economic benefit of kinematic GPS relative positioning in high accurate photogrammetric point determination.
基金This project was supported by National Natural Science Foundation of China (No. 30270275) Acknowledgement We thank State Forest Administration and the Chinese Academy of Sciences with its many research institutes for providing the information required for this paper. Also, a sincere thank to Bai Yajun for her patience and endless support in discussions and email correspondence.
文摘This paper introduces the state of waterlands in China and discribes the applications of Remote Sensing (RS), Geographical Information System (G1S) and Global Positioning System (GPS) in wetland research, including land-coverclassification and change detection, wetland evolutionary processes, landscape-change analyses, channel migration, flood and wetlands resource monitoring and spatial quantitative analyses/modeling, ecosystem service evaluation, ecological processes and risk assessments, disease control, water quality monitoring/modeling, pollution monitoring/modeling, wetlands hydrology, wetland information systems and WebGIS. The limitations and needs for optimal use of these technologies are discussed, such as the limited advanced technical knowledge and skills, low awareness and capacity, unclear link between GIS output and policy making, lack of supporting policies and standards, lack of a wetlands geo-information networklimite, and the use of these techniques in wetland research. It is suggested that for realising true applications of RS, GIS and GPS technologies, the availability, accessibility, reliability, homogeneity, and continuity of wetlands-related geo-information enabling environment, policies and standards, and funding are needed.
基金supported by National Natural Science Foundation of China(41304014,41204001,41274037 and 41431069)National 863 Project of China(2013AA122501)+4 种基金China postdoctoral science foundation(2015M57228)the Basic Fund of Hubei Subsurface Multi-scale Imaging Key Laboratory,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan(SMIL-2015-01)the Fundamental Research Funds for National Universities(CUGL150810)China Scholarship Council(201506415072)the Basic Research Fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education of China(13-02-11 and 14-01-01)
文摘On 3 July 2015, a Mw 6.4 earthquake occurred on a blind fault struck Pishan, Xinjiang,China. By combining Crustal Movement Observation Network of China(CMONOC) and other Static Global Positioning System(GPS) sites surrounding Pishan region, it provides a rare chance for us to constrain the slip rupture for such a moderate event. The maximum displacement is up to 12 cm, 2 cm for coseismic and postseismic deformation, respectively,and both the deformation patterns show a same direction moving northeastward. With rectangular dislocation model, a magnitude of Mw6.48, Mw6.3 is calculated based on coseismic, postseismic deformation respectively. Our result indicates the western Kunlun range is still moving toward Tarim Basin followed by an obvious postseismic slip associated with this earthquake. To determine a more reasonable model for postseismic deformation, a longer GPS dataset will be needed.
基金funded by the Project of National Natural Science Foundation of China,based on GPS and leveling data simulation and study on the state of seismogenic deformation field and its mechanical characteristics(41274008)the Basic Research Project of Institute the Earthquake Science,China Earthquake Administration,crustal deformation observation experiment and dynamic process simulation research(2014IES010201)
文摘Continuous observation data from 24 GPS stations are selected in the area (33.0°N-41.0°N, 95.0°E-105.0°E) for this study (the period is from Jan. 1, 2015 to Jan. 20, 2016). Three components, NS, EW and UD, of the daily solutions are filtered by the Hilbert-Huang transform (HHT) with frequency band of 5.787×10^-7-7.716 ×10^-8 Hz (20-150 days in period). And short-term dynamic characteristics of micro displacement before Menyuan M6.4 earthquake are studied by using the temporal dependencies and cross spectrum analysis. The results show that before the earthquake the horizontal undulatory motions are higher than the average level in the series data which indicate the disturbance feature of regional stress before the earthquake. Three GPS stations on Qinghai-Tibet Plateau with their setting perpendicular to the seismogenic fault have consistent movement. The increase of amplitude of the horizontal micro motion observed before the quake is conducive to the earthquake occurrence. However, we could not be sure if the undulatory motion triggered the earthquake. It is quite necessary to build more GPS continuous observation stations and optimize the monitoring network so as to improve the understanding of the shortterm dynamic crustal variation before earthquake.
文摘Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial navigation system (INS) information and almanac data and reducing the searching area. The traditional fast acquisition is analyzed, the fast acquisition of the GPS receiver aided is presented by INS information, and the signal is fine captured by spectrum zooming. Then the algorithm is simulated by sampled GPS intermediate frequency (IF) signal and the result verifies that this acquisition can dramatically improve the capability of GPS receiver and reduce its acquisition time.
文摘For the improvement of accuracy and better fault-tolerant performance, a global position system (GPS)/vision navigation (VISNAV) integrated relative navigation and attitude determination approach is presented for ultra-close spacecraft formation flying. Onboard GPS and VISNAV system are adopted and a federal Kalman filter architecture is used for the total navigation system design. Simulation results indicate that the integrated system can provide a total improvement of relative navigation and attitude estimation performance in accuracy and fault-tolerance.
基金supported by the National Basic Research Program of China (973 Program) under Grant No. 2010CB428601the Open Fund of the State Key Laboratory of Satellite Ocean Environment Dynamics under Contract No. SOED0705the China Postdoctoral Science Foundation
文摘In the present reported study, the vertical distributions of local atmospheric refractivity were retrieved from ground- based GPS observations at low elevation angles. An improved optimization method was implemented at altitudes of 0-10 km to search for a best-fit refractivity profile that resulted in atmospheric delays most similar to the delays calculated from the observations. A ray-tracing model was used to simulate neutral atmospheric delays corresponding to a given refractivity profile. We initially performed a "theoretical retrieval", in which no observation data were involved, to verify the optimization method. A statistical relative error of this "theoretical retrieval" (-2% to 2%) indicated that such a retrieval is effective. In a practical retrieval, observations were obtained using a dual-frequency GPS receiver, and its initial value was provided by CIRA86aQ_UoG data. The statistical relative errors of the practical retrieval range from -3% to 5% were compared with co-located radiosonde measurements, Results clearly revealed diurnal variations in local refractivity prc,files, The results also suggest that the general vertical distribution of refractivity can be derived with a high temporal resolution. However, further study is needed to describe the vertical refractivity gradient clearly.
文摘A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this papers the roles of moisture in the genesis and development of the squall line were studied. Based on the precipitable water vapor (PWV) data from a ground-based GPS network over the Yangtze River Delta in China, plus data from a Pennsylvania State University/National Atmospheric Center (PSU/NCAR) mesoscale model (MM5) simulation, initialized by three-dimensional variational (3D-VAR) assimilation of the PWV data, some interesting features are revealed. During the 12 hours prior to the squall line arriving in the Shanghai area, a significant increase in PWV indicates a favorable moist environment for a squall line to develop. The vertical profile of the moisture illustrates that it mainly increased in the middle levels of the troposphere, and not at the surface. Temporal variation in PWV is a better precursor for squall line development than other surface meteorological parameters. The characteristics of the horizontal distribution of PWV not only indicated a favorable moist environment, but also evolved a cyclonic wind field for a squall line genesis and development. The "+2 mm" contours of the three-hourly PWV variation can be used successfully to predict the location of the squall line two hours later.
文摘Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared witb their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.
基金Projects(40974006,40774003) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0570) supported by the Program for New Century Excellent Talents in Chinese Universities+2 种基金Projects(2011JQ001,2009QZZD004) supported by the Fundamental Research Funds for the Central Universities in ChinaProjects(09K005,09K006) supported by the Key Laboratory for Precise Engineering Surveying & Hazard Monitoring of Hunan Province,ChinaProject(1343-74334000023) supported by the Graduate DegreeThesis Innovation Foundation of Central South University,China
文摘To better understand the mechanism of the Mw6.3 L'Aquila (Central Italy) earthquake occurred in 2009, global positioning system (GPS) and interferometric synthetic aperture radar (InSAR) data were used to derive the coseismic slip distribution of the earthquake fault. Firstly, based on the homogeneous elastic half-space model, the fault geometric parameters were solved by the genetic algorithm. The best fitting model shows that the fault is a 13.7 km×14.1 km rectangular fault, in 139.3° strike direction and 50.2° southwest-dipping. Secondly, fixing the optimal fault geometric parameters, the fault plane was extended and discretized into 16× 16 patches, each with a size of 1 kmx 1 krn, and the non-uniform slip distribution of the fault was inverted by the steepest descent method with an appropriate smoothing ratio based on the layered crustal structure model. The preferred solution shows that the fault is mainly a normal fault with slight right-lateral strike slip, the maximum slip of 1.01 m is located in the depth of 8.28 km, the average rake is -100.9°, and the total geodetic moment is about 3.34× 1018 N.m (Mw 6.28). The results are much closer than previous studies in comparison with the seismological estimation. These demonstrate that the coseismic fault slip distribution of the L'Aauila earthauake inverted by the crustal model considering layered characters is reliable.