The Global Positioning System(GPS)has become a foundation for most location-based services and navigation systems,such as autonomous vehicles,drones,ships,and wearable devices.However,it is a challenge to verify if th...The Global Positioning System(GPS)has become a foundation for most location-based services and navigation systems,such as autonomous vehicles,drones,ships,and wearable devices.However,it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools.Pervasive tools,such as Fake GPS,Lockito,and software-defined radio,enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected.Furthermore,it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors.To this end,we propose DeepPOSE,a deep learning model,to address the noise introduced in sensor readings and detect GPS spoofing attacks on mobile platforms.Our design uses a convolutional and recurrent neural network to reduce the noise,to recover a vehicle's real-time trajectory from multiple sensor inputs.We further propose a novel scheme to map the constructed trajectory from sensor readings onto the Google map,to smartly eliminate the accumulation of errors on the trajectory estimation.The reconstructed trajectory from sensors is then used to detect the GPS spoofing attack.Compared with the existing method,the proposed approach demonstrates a significantly higher degree of accuracy for detecting GPS spoofing attacks.展开更多
Smart grids are increasingly dependent on data with the rapid development of communication and measurement.As one of the important data sources of smart grids,phasor measurement unit(PMU)is facing the high risk from a...Smart grids are increasingly dependent on data with the rapid development of communication and measurement.As one of the important data sources of smart grids,phasor measurement unit(PMU)is facing the high risk from attacks.Compared with cyber attacks,global position system(GPS)spoofing attacks(GSAs)are easier to implement because they can be exploited by portable devices,without the need to access the physical system.Therefore,this paper proposes a novel method for pattern recognition of GSA and an additional function of the proposed method is the data correction to the phase angle difference(PAD)deviation.Specifically,this paper analyzes the effect of GSA on PMU measurement and gives two common patterns of GSA,i.e.,the step attack and the ramp attack.Then,the method of estimating the PAD deviation across a transmission line introduced by GSA is proposed,which does not require the line parameters.After obtaining the estimated PAD deviations,the pattern of GSA can be recognized by hypothesis tests and correlation coefficients according to the statistical characteristics of the estimated PAD deviations.Finally,with the case studies,the effectiveness of the proposed method is demonstrated,and the success rate of the pattern recognition and the online performance of the proposed method are analyzed.展开更多
基金This work was supported in part by NSF under Grants CNS-1950704,CNS-1828593,and OAC-1829771,ONR under Grant N00014-20-1-2065,NSA under Grant H98230-21-1-0278,and the Commonwealth Cyber Initiative.
文摘The Global Positioning System(GPS)has become a foundation for most location-based services and navigation systems,such as autonomous vehicles,drones,ships,and wearable devices.However,it is a challenge to verify if the reported geographic locations are valid due to various GPS spoofing tools.Pervasive tools,such as Fake GPS,Lockito,and software-defined radio,enable ordinary users to hijack and report fake GPS coordinates and cheat the monitoring server without being detected.Furthermore,it is also a challenge to get accurate sensor readings on mobile devices because of the high noise level introduced by commercial motion sensors.To this end,we propose DeepPOSE,a deep learning model,to address the noise introduced in sensor readings and detect GPS spoofing attacks on mobile platforms.Our design uses a convolutional and recurrent neural network to reduce the noise,to recover a vehicle's real-time trajectory from multiple sensor inputs.We further propose a novel scheme to map the constructed trajectory from sensor readings onto the Google map,to smartly eliminate the accumulation of errors on the trajectory estimation.The reconstructed trajectory from sensors is then used to detect the GPS spoofing attack.Compared with the existing method,the proposed approach demonstrates a significantly higher degree of accuracy for detecting GPS spoofing attacks.
基金supported by the National Key Research and Development Program of China(No.2017YFB0902900,No.2017YFB0902901)National Natural Science Foundation of China(No.51627811,No.51725702)the Fundamental Research Funds for the Central Universities(No.2018ZD01)
文摘Smart grids are increasingly dependent on data with the rapid development of communication and measurement.As one of the important data sources of smart grids,phasor measurement unit(PMU)is facing the high risk from attacks.Compared with cyber attacks,global position system(GPS)spoofing attacks(GSAs)are easier to implement because they can be exploited by portable devices,without the need to access the physical system.Therefore,this paper proposes a novel method for pattern recognition of GSA and an additional function of the proposed method is the data correction to the phase angle difference(PAD)deviation.Specifically,this paper analyzes the effect of GSA on PMU measurement and gives two common patterns of GSA,i.e.,the step attack and the ramp attack.Then,the method of estimating the PAD deviation across a transmission line introduced by GSA is proposed,which does not require the line parameters.After obtaining the estimated PAD deviations,the pattern of GSA can be recognized by hypothesis tests and correlation coefficients according to the statistical characteristics of the estimated PAD deviations.Finally,with the case studies,the effectiveness of the proposed method is demonstrated,and the success rate of the pattern recognition and the online performance of the proposed method are analyzed.