The paper investigates the temporal variations of GPS irregularities at quasi-conjugate points in the polar region during the October-Novemebrr 2003 Halloween storm. The pseudorange and carrier phase observables obtai...The paper investigates the temporal variations of GPS irregularities at quasi-conjugate points in the polar region during the October-Novemebrr 2003 Halloween storm. The pseudorange and carrier phase observables obtained from dual frequency GPS receivers of Trimble 5700 at Scott Base Station in Antarctica and Ashtech Z-X113 at Resolute Bay in Nunavut, Arctic are employed in determination the ionospheric total electron content (TEC) and scintillation parameters. The comparison of TEC and scintillation parameters at both stations show: dominant occurrence of positive storm phases over the nightside hemisphere, dominant occurrence of negative storm phases over the dayside hemisphere ,the periods of pronounced scintillation activity at both hemispheres were coincident with the TEC enhancement periods, the weak scintillation periods are coincident with the TEC depletion periods. The strong TEC enhancement during the sudden storm commencement of the geomagnetic storm was only seen over the nightside station, and finally obvious asymmetry in the ionospheric TEC and scintillation activity between summer and winter hemispheres was observed. The results over the polar were in good agreement with previous measurements made by other researchers over the subauraral and midlatitude regions.展开更多
From Nov. 6 to 10, 2004, a large number of solar events occurred, which triggered many solar flares and coronal mass ejections (CMEs). These CMEs caused two large geomagnetic storms and continuous energy proton events...From Nov. 6 to 10, 2004, a large number of solar events occurred, which triggered many solar flares and coronal mass ejections (CMEs). These CMEs caused two large geomagnetic storms and continuous energy proton events. During this period, one large positive ionospheric storm happened over the East-Asian region on Nov. 8, 2004. On Nov. 10, 2004, a strong spread-F was observed by the ionosonde located in the mid-latitude region of East China and Japan, and the ionospheric fluctuation over the ionosonde stations derived from GPS observation was also obvious. In this report, the characteristics of the spatial distribution of the ionosphere fluctuation and its temporal evolution are studied using the parameter of the rate of total electron content (ROT) derived from dual-frequency GPS measurement. Strong fluctuating activity of the ionosphere was found over the mid-latitude region in the southern and northern hemispheres between longitudes of 100°E and 180°E during the magnetic storm period on Nov. 10, 2004, and a regular movement of the disturbing region was observed. In the end, the reason of the ionospheric fluctuation during this magnetic storm is analyzed.展开更多
文摘The paper investigates the temporal variations of GPS irregularities at quasi-conjugate points in the polar region during the October-Novemebrr 2003 Halloween storm. The pseudorange and carrier phase observables obtained from dual frequency GPS receivers of Trimble 5700 at Scott Base Station in Antarctica and Ashtech Z-X113 at Resolute Bay in Nunavut, Arctic are employed in determination the ionospheric total electron content (TEC) and scintillation parameters. The comparison of TEC and scintillation parameters at both stations show: dominant occurrence of positive storm phases over the nightside hemisphere, dominant occurrence of negative storm phases over the dayside hemisphere ,the periods of pronounced scintillation activity at both hemispheres were coincident with the TEC enhancement periods, the weak scintillation periods are coincident with the TEC depletion periods. The strong TEC enhancement during the sudden storm commencement of the geomagnetic storm was only seen over the nightside station, and finally obvious asymmetry in the ionospheric TEC and scintillation activity between summer and winter hemispheres was observed. The results over the polar were in good agreement with previous measurements made by other researchers over the subauraral and midlatitude regions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41174134 and 40904036)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB811405)the State Key Laboratory of Space Weather
文摘From Nov. 6 to 10, 2004, a large number of solar events occurred, which triggered many solar flares and coronal mass ejections (CMEs). These CMEs caused two large geomagnetic storms and continuous energy proton events. During this period, one large positive ionospheric storm happened over the East-Asian region on Nov. 8, 2004. On Nov. 10, 2004, a strong spread-F was observed by the ionosonde located in the mid-latitude region of East China and Japan, and the ionospheric fluctuation over the ionosonde stations derived from GPS observation was also obvious. In this report, the characteristics of the spatial distribution of the ionosphere fluctuation and its temporal evolution are studied using the parameter of the rate of total electron content (ROT) derived from dual-frequency GPS measurement. Strong fluctuating activity of the ionosphere was found over the mid-latitude region in the southern and northern hemispheres between longitudes of 100°E and 180°E during the magnetic storm period on Nov. 10, 2004, and a regular movement of the disturbing region was observed. In the end, the reason of the ionospheric fluctuation during this magnetic storm is analyzed.