Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es...Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.展开更多
为了说明高动态环境中时间同步对于组合导航系统的重要性,在Kalman滤波方程的基础上,推导了时间同步误差与Kalman滤波结果之间的定性关系。提出一种利用GPS接收机中1PPS(Pulse Per Second)信号作为同步标签的时间同步方法,将IMU中的数...为了说明高动态环境中时间同步对于组合导航系统的重要性,在Kalman滤波方程的基础上,推导了时间同步误差与Kalman滤波结果之间的定性关系。提出一种利用GPS接收机中1PPS(Pulse Per Second)信号作为同步标签的时间同步方法,将IMU中的数据加上精确的时间标签,从而达到时间同步的目的。全部时间同步功能由FPGA实现,利用Verilog HDL语言进行开发,整体硬件结构简单而且适用范围广。试验结果显示了这种时间同步设计可以明显减小滤波结果的估计误差,有效的提高了组合导航系统的定位精度。展开更多
基金supported by the Fundamental Research Funds for the Central Universities(xzy022020045)the National Natural Science Foundation of China(61976175)。
文摘Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.
文摘为了说明高动态环境中时间同步对于组合导航系统的重要性,在Kalman滤波方程的基础上,推导了时间同步误差与Kalman滤波结果之间的定性关系。提出一种利用GPS接收机中1PPS(Pulse Per Second)信号作为同步标签的时间同步方法,将IMU中的数据加上精确的时间标签,从而达到时间同步的目的。全部时间同步功能由FPGA实现,利用Verilog HDL语言进行开发,整体硬件结构简单而且适用范围广。试验结果显示了这种时间同步设计可以明显减小滤波结果的估计误差,有效的提高了组合导航系统的定位精度。