This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimet...With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy.展开更多
The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precisi...The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.展开更多
Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional metho...Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AF1S (adaptive fuzzy inference systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed method to reduce the navigation system errors in comparison with KF alone.展开更多
Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightl...Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.展开更多
GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and...GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.展开更多
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem...In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.展开更多
A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estima...A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estimation's error covariance matrix and the spectral radius of update measurement noise variance-covariance matrix for the proper choice of the filter weight and hence the filter gain factors. Theoretical analysis and results from simulation in which the SINS/GPS was compared to conventional Kalman filter are presented. Results show that the algorithm of this adaptive federal Kalman filter is simpler than that of the conventional one. Furthermore, it outperforms the conventional Kalman filter when the system is undertaken measurement malfunctions because of its possession of adaptive ability. This filter can be used in the vehicle integrated navigation system.展开更多
The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is...The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is that the GPS systems work well only in open environments with no overhead obstructions and they are subject to large unavoidable errors when the reception from some of the satellites are blocked. This occurs frequently in urban environments, forests and tunnels. GPS systems require at least four “visible” satellites to maintain a good position fix. In many situations in which higher level of accuracy is required, the navigation cannot be achieved by GPS alone. This paper discusses the design of a reliable multisensor fusion algorithm using GPS and Inertial Navigation System in order to decrease the implementation cost of such systems on land vehicles. The major contribution of this paper is in the definition of the possible developments and research axes in land navigation.展开更多
In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm eff...In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.展开更多
In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integra...In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integrated system ofGPSand INS. The closed-loop Kalm an Filter and U-D discom pose algorithm have been used. The sim ulation results associated to four integrated m odels of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta- range synthesis have been provided, and the actualeffects of variously integrated m odels have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled m odelis the m osteffective to im provethe coupled system perform anceand the individualdelta-rangecoupled m od- elhad betterbe avoided in application.展开更多
The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS output...The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS outputs and the offset of GPS and INS, state equations and observations are designed to perform the calculation and improve the navigation accuracy. An example shows that with the method the reliable navigation parameters have been obtained.展开更多
Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally us...Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.展开更多
The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation acc...The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.展开更多
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es...Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.展开更多
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.
文摘With the rapid development of autopilot technology,a variety of engi-neering applications require higher and higher requirements for navigation and positioning accuracy,as well as the error range should reach centimeter level.Single navigation systems such as the inertial navigation system(INS)and the global navigation satellite system(GNSS)cannot meet the navigation require-ments in many cases of high mobility and complex environments.For the purpose of improving the accuracy of INS-GNSS integrated navigation system,an INS-GNSS integrated navigation algorithm based on TransGAN is proposed.First of all,the GNSS data in the actual test process is applied to establish the data set.Secondly,the generator and discriminator are constructed.Borrowing the model structure of generator transformer,the generator is constructed by multi-layer transformer encoder,which can obtain a wider data perception ability.The generator and discriminator are trained and optimized by the production countermeasure network,so as to realize the speed and position error compensa-tion of INS.Consequently,when GNSS works normally,TransGAN is trained into a high-precision prediction model using INS-GNSS data.The trained Trans-GAN model is emoloyed to compensate the speed and position errors for INS.Through the test analysis offlight test data,the test results are compared with the performance of traditional multi-layer perceptron(MLP)and fuzzy wavelet neural network(WNN),demonstrating that TransGAN can effectively correct the speed and position information when GNSS is interrupted,with the high accuracy.
文摘The Successive Orthogonalization Decentralized Kalman Filter (SODKF ) is a new method which is used for large system state estimation. It can be applied not only to large system decentralization, but also to precision realization at approximately the same level of the global filter, thus, making possible the engineering operation as well as shortening the computing time. This paper discusses the principles and features of SODKF when used in GPS/INS integrated navigation system. The system will be firstly divided into three subsystems and then corrected in both open and closed loops. The system simulation results by two integrated patterns show that SODKF is efficient and realizable. While the three subsystems are simulated in series, the computing speed doubles that of the global system. In addition, its optimal estimating precision remains unchanged. It can be concluded from this paper that large integrated navigation systems with GPS, INS, Terrain Match, Loran C, Doppler Radar and Radio Altimeter can be made more efficient by this multi subsystem of navigation.
文摘Nowadays, GPS (global positioning system) receivers are aided by INS (inertial navigation systems) to achieve more precision and stability in land-vehicular navigation. KF (Kalman filter) is a conventional method which is used for the navigation system to estimate the navigational parameters, when INS measurements are fused with GPS data. However, new generation of INS, which relies on MEMS (micro-electro-mechanical systems) based low-cost IMUs (inertial measurement units) for the land navigation systems, decreases the accuracy and the robustness of navigation system due to their inherent errors. This paper provides a new method for fusing the low-cost IMU and GPS measurements. The proposed method is based on KF aided by AF1S (adaptive fuzzy inference systems) as a promising solution to overcome the mentioned problems. The results of this study show the efficiency of the proposed method to reduce the navigation system errors in comparison with KF alone.
基金The National Basic Research Program of China(973 Program)(No.2009CB724002)the National Natural Science Foundation of China(No.50975049)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039)the Aviation Science Foundation(No.20090869008)the Six Peak Talents Foundation in Jiangsu Province(No.2008143)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)
文摘Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.
文摘GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.
基金supported in part by the National Natural Science Foundation of China(No.41876222)。
文摘In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively.
文摘A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estimation's error covariance matrix and the spectral radius of update measurement noise variance-covariance matrix for the proper choice of the filter weight and hence the filter gain factors. Theoretical analysis and results from simulation in which the SINS/GPS was compared to conventional Kalman filter are presented. Results show that the algorithm of this adaptive federal Kalman filter is simpler than that of the conventional one. Furthermore, it outperforms the conventional Kalman filter when the system is undertaken measurement malfunctions because of its possession of adaptive ability. This filter can be used in the vehicle integrated navigation system.
文摘The interest for land navigation has increased for the recent years. With the advent of the Global Position System (GPS) we have now the ability to determine the absolute position anywhere on the globe. The problem is that the GPS systems work well only in open environments with no overhead obstructions and they are subject to large unavoidable errors when the reception from some of the satellites are blocked. This occurs frequently in urban environments, forests and tunnels. GPS systems require at least four “visible” satellites to maintain a good position fix. In many situations in which higher level of accuracy is required, the navigation cannot be achieved by GPS alone. This paper discusses the design of a reliable multisensor fusion algorithm using GPS and Inertial Navigation System in order to decrease the implementation cost of such systems on land vehicles. The major contribution of this paper is in the definition of the possible developments and research axes in land navigation.
基金Project(41374018)supported by the National Natural Science Foundation of ChinaProject(J13LN74)supported by the Shandong Province Higher Educational Science and Technology Program,China
文摘In inertial navigation system(INS) and global positioning system(GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit(IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS's antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter's prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter's update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.
文摘In orderto furtherstudy theperform ance oftightly integrated navigation system ofGPS/ INS, a sem i-physicalsim ulation oftightly coupled system has been done based on the data gathered from the experim entof integrated system ofGPSand INS. The closed-loop Kalm an Filter and U-D discom pose algorithm have been used. The sim ulation results associated to four integrated m odels of pseudo-range, delta-range, pseudo-range and delta-range alternation, and pseudo-range and delta- range synthesis have been provided, and the actualeffects of variously integrated m odels have been analyzed. The results show that the pseudo-range and delta-range synthesis coupled m odelis the m osteffective to im provethe coupled system perform anceand the individualdelta-rangecoupled m od- elhad betterbe avoided in application.
基金Supported by the Scientific Research Foundation for ROCS,SEMJiangxi Education Bureau Project(No.200525) .
文摘The method of integrated data processing for GPS and INS(inertial navigation system) field test over the Rocky Mountains using the adaptive Kalman filtering technique is presented. On the basis of the known GPS outputs and the offset of GPS and INS, state equations and observations are designed to perform the calculation and improve the navigation accuracy. An example shows that with the method the reliable navigation parameters have been obtained.
基金supported by the National Natural Science Foundation of China (6083400560775001)
文摘Strapdown inertial navigation system(SINS) requires an initialization process that establishes the relationship between the body frame and the local geographic reference.This process,called alignment,is generally used to estimate the initial attitude angles.This is possible because an accurate determination of the inertial measurement unit(IMU) motion is available based on the measurement obtained from global position system(GPS).But the update frequency of GPS is much lower than SINS.Due to the non-synchronous data streams from GPS and SINS,the initial attitude angles may not be computed accurately enough.In addition,the estimated initial attitude angles may have relatively large uncertainties that can affect the accuracy of other navigation parameters.This paper presents an effective approach of matching the velocities which are provided by GPS and SINS.In this approach,a digital high-pass filter,which implements a pre-filtering scheme of the measured signal,is used to filter the Schuler cycle of discrete velocity difference between the SINS and GPS.Simulation results show that this approach improves the accuracy greatly and makes the convergence time satisfy the required accuracy.
基金Supported by the National Natural Science Foundation of China(61502257,41304031)
文摘The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.
基金supported by the Fundamental Research Funds for the Central Universities(xzy022020045)the National Natural Science Foundation of China(61976175)。
文摘Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.