An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applica...An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.展开更多
The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation acc...The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.展开更多
为了说明高动态环境中时间同步对于组合导航系统的重要性,在Kalman滤波方程的基础上,推导了时间同步误差与Kalman滤波结果之间的定性关系。提出一种利用GPS接收机中1PPS(Pulse Per Second)信号作为同步标签的时间同步方法,将IMU中的数...为了说明高动态环境中时间同步对于组合导航系统的重要性,在Kalman滤波方程的基础上,推导了时间同步误差与Kalman滤波结果之间的定性关系。提出一种利用GPS接收机中1PPS(Pulse Per Second)信号作为同步标签的时间同步方法,将IMU中的数据加上精确的时间标签,从而达到时间同步的目的。全部时间同步功能由FPGA实现,利用Verilog HDL语言进行开发,整体硬件结构简单而且适用范围广。试验结果显示了这种时间同步设计可以明显减小滤波结果的估计误差,有效的提高了组合导航系统的定位精度。展开更多
文摘An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.
基金Supported by the National Natural Science Foundation of China(61502257,41304031)
文摘The conventional Kalman filter(CKF)is widely used in tightly-coupled INS/GPS integrated navigation systems.The linearization accuracy of the CKF observation model is one of the decisive factors of the estimation accuracy and therefore navigation accuracy.Additionally,the conventional observation model(COM)used by the filter may be divergent,which would result into some terrible accuracies of INS/GPS integration navigation in some cases.To improve the navigation accuracy,the linearization accuracy of the COM still needs further improvement.To deal with this issue,the observation model is modified with the linearization of the range and range rate equations in this paper.Compared with COM,the modified observation model(MOM)further considers the difference between the real user position and the position calculated by SINS.To verify the advantages of this model,INS/GPS integrated navigation simulation experiments are conducted with the usage of COM and MOM respectively.According to the simulation results,the positions(velocities)calculated using COM are divergent over time while the others using MOM are convergent,which demonstrates the higher linearization accuracy of MOM.
文摘为了说明高动态环境中时间同步对于组合导航系统的重要性,在Kalman滤波方程的基础上,推导了时间同步误差与Kalman滤波结果之间的定性关系。提出一种利用GPS接收机中1PPS(Pulse Per Second)信号作为同步标签的时间同步方法,将IMU中的数据加上精确的时间标签,从而达到时间同步的目的。全部时间同步功能由FPGA实现,利用Verilog HDL语言进行开发,整体硬件结构简单而且适用范围广。试验结果显示了这种时间同步设计可以明显减小滤波结果的估计误差,有效的提高了组合导航系统的定位精度。