期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Snow Water Equivalent Estimation for a Snow-Covered Prairie Grass Field by GPS Interferometric Reflectometry
1
作者 Mark D. Jacobson 《Positioning》 2012年第3期31-41,共11页
The amount of water stored in snowpack is the single most important measurement for the management of water supply and flood control systems. The available water content in snow is called the snow water equivalent (SW... The amount of water stored in snowpack is the single most important measurement for the management of water supply and flood control systems. The available water content in snow is called the snow water equivalent (SWE). The product of snow density and depth provides an estimate of SWE. In this paper, snow depth and density are estimated by a nonlinear least squares fitting algorithm. The inputs to this algorithm are global positioning system (GPS) signals and a simple GPS interferometric reflectometry (GPS-IR) model. The elevation angles of interest at the GPS receiving antenna are between 50 and 300. A snow-covered prairie grass field experiment shows potential for inferring snow water equivalent using GPS-IR. For this case study, the average inferred snow depth (17.9 cm) is within the in situ measurement range (17.6 cm ± 1.5 cm). However, the average inferred snow density (0.13 g.cm-3) overestimates the in situ measurements (0.08 g.cm-3 ± 0.02 g.cm-3). Consequently, the average inferred SWE (2.33 g.cm-2) also overestimates the in situ calculations (1.38 g.cm-2 ± 0.36 g.cm-2). 展开更多
关键词 Global Positioning System (GPS) GPS Interferometric reflectometry (gps-ir) SNOW Depth SNOW Density SNOW Water Equivalent (SWE) Multipath Specular Reflection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部