针对大数据量导致模板匹配目标识别算法计算时间长,难以满足快速检测的实际需求问题,在采用最新NVIDIA Tesla GPU构建的CPU+GPU异构平台上,设计了一种模板匹配目标识别并行算法.通过对模板图像数据常量化、输入图像数据极致流多处理器...针对大数据量导致模板匹配目标识别算法计算时间长,难以满足快速检测的实际需求问题,在采用最新NVIDIA Tesla GPU构建的CPU+GPU异构平台上,设计了一种模板匹配目标识别并行算法.通过对模板图像数据常量化、输入图像数据极致流多处理器片上化和简化定位参数计算3方面优化了并行算法,并对算法进行性能测试.实验表明,该算法在保证识别效果的同时实时性明显提高.展开更多
Quantitative remote sensing retrieval algorithms help understanding the dynamic aspects of Digital Earth.However,the Big Data and complex models in Digital Earth pose grand challenges for computation infrastructures.I...Quantitative remote sensing retrieval algorithms help understanding the dynamic aspects of Digital Earth.However,the Big Data and complex models in Digital Earth pose grand challenges for computation infrastructures.In this article,taking the aerosol optical depth(AOD)retrieval as a study case,we exploit parallel computing methods for high efficient geophysical parameter retrieval.We present an efficient geocomputation workflow for the AOD calculation from the Moderate Resolution Imaging Spectroradiometer(MODIS)satellite data.According to their individual potential for parallelization,several procedures were adapted and implemented for a successful parallel execution on multicore processors and Graphics Processing Units(GPUs).The benchmarks in this paper validate the high parallel performance of the retrieval workflow with speedups of up to 5.x on a multi-core processor with 8 threads and 43.x on a GPU.To specifically address the time-consuming model retrieval part,hybrid parallel patterns which combine the multicore processor’s and the GPU’s compute power were implemented with static and dynamic workload distributions and evaluated on two systems with different CPU–GPU configurations.It is shown that only the dynamic hybrid implementation leads to a greatly enhanced overall exploitation of the heterogeneous hardware environment in varying circumstances.展开更多
局部Gabor二值模式直方图序列(histogram sequence of local Gabor binary patterns,简称HSLGBP)的人脸识别方法具有较高的识别率,但该方法的特征计算较复杂、耗时长,并且特征维数高、匹配速度慢.给出一个并行的HSLGBP方法(简称P-HSLGB...局部Gabor二值模式直方图序列(histogram sequence of local Gabor binary patterns,简称HSLGBP)的人脸识别方法具有较高的识别率,但该方法的特征计算较复杂、耗时长,并且特征维数高、匹配速度慢.给出一个并行的HSLGBP方法(简称P-HSLGBP),在多核PC机群上使用MPI实现了该方法,并使用该方法对ORL人脸库中的40人共400幅图像做了实验.理论分析和实验说明了P-HSLGBP方法具有较高的加速比和并行计算效率.在保证高识别率前提下,在由10个双核PC机组成的机群环境下的加速比达到17.同时,P-HSLGBP方法具有良好的可扩展性,适于大规模人脸库的快速识别.展开更多
文摘针对大数据量导致模板匹配目标识别算法计算时间长,难以满足快速检测的实际需求问题,在采用最新NVIDIA Tesla GPU构建的CPU+GPU异构平台上,设计了一种模板匹配目标识别并行算法.通过对模板图像数据常量化、输入图像数据极致流多处理器片上化和简化定位参数计算3方面优化了并行算法,并对算法进行性能测试.实验表明,该算法在保证识别效果的同时实时性明显提高.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grant 41271371 and Grant 41471306the Major International Cooperation and Exchange Project of NSFC under Grant 41120114001+2 种基金the Institute of Remote Sensing and Digital Earth Institute,Chinese Academy of Sciences(CAS-RADI)Innovation project under Grants Y3SG0300CXthe graduate foundation of CAS-RADI under Grant Y4ZZ06101Bthe Joint Doctoral Promotion Program hosted by the Fraunhofer Institute and Chinese Academy of Sciences.Many thanks are due to the Fraunhofer Institute for Algorithms and Scientific Computing SCAI for the multi-core and GPU platform used in this paper.
文摘Quantitative remote sensing retrieval algorithms help understanding the dynamic aspects of Digital Earth.However,the Big Data and complex models in Digital Earth pose grand challenges for computation infrastructures.In this article,taking the aerosol optical depth(AOD)retrieval as a study case,we exploit parallel computing methods for high efficient geophysical parameter retrieval.We present an efficient geocomputation workflow for the AOD calculation from the Moderate Resolution Imaging Spectroradiometer(MODIS)satellite data.According to their individual potential for parallelization,several procedures were adapted and implemented for a successful parallel execution on multicore processors and Graphics Processing Units(GPUs).The benchmarks in this paper validate the high parallel performance of the retrieval workflow with speedups of up to 5.x on a multi-core processor with 8 threads and 43.x on a GPU.To specifically address the time-consuming model retrieval part,hybrid parallel patterns which combine the multicore processor’s and the GPU’s compute power were implemented with static and dynamic workload distributions and evaluated on two systems with different CPU–GPU configurations.It is shown that only the dynamic hybrid implementation leads to a greatly enhanced overall exploitation of the heterogeneous hardware environment in varying circumstances.
文摘局部Gabor二值模式直方图序列(histogram sequence of local Gabor binary patterns,简称HSLGBP)的人脸识别方法具有较高的识别率,但该方法的特征计算较复杂、耗时长,并且特征维数高、匹配速度慢.给出一个并行的HSLGBP方法(简称P-HSLGBP),在多核PC机群上使用MPI实现了该方法,并使用该方法对ORL人脸库中的40人共400幅图像做了实验.理论分析和实验说明了P-HSLGBP方法具有较高的加速比和并行计算效率.在保证高识别率前提下,在由10个双核PC机组成的机群环境下的加速比达到17.同时,P-HSLGBP方法具有良好的可扩展性,适于大规模人脸库的快速识别.