潜在狄利克雷分布(LDA)以词袋(bag of words,BOW)模型为基础,简化了建模的复杂度,但使得主题的语义连贯性较差,文档表征能力不强。为解决此问题,提出了一种基于语义分布相似度的主题模型。该模型在EM(expectation maximization)算法框架...潜在狄利克雷分布(LDA)以词袋(bag of words,BOW)模型为基础,简化了建模的复杂度,但使得主题的语义连贯性较差,文档表征能力不强。为解决此问题,提出了一种基于语义分布相似度的主题模型。该模型在EM(expectation maximization)算法框架下,使用GPU(generalized Pólya urn)模型加入单词-单词和文档-主题语义分布相似度来引导主题建模,从语义关联层面上削弱了词袋假设对主题产生的影响。在四个公开数据集上的实验表明,基于语义分布相似度的主题模型在主题语义连贯性、文本分类准确率方面相对于目前流行的主题建模算法表现得更加优越,同时该模型提高了收敛速度和模型精度。展开更多
High-performance computational models are required to make the real-time or faster than rea^-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objectiv...High-performance computational models are required to make the real-time or faster than rea^-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary so- lar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolu- tion of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements t^om spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.展开更多
The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows whe...The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows when compared with the lattice BGK Boltzmann equation(LBGK).However,the computing efficiency of lattice Boltzmann method(LBM) is too low to make it for practical applications,unless using a massive parallel computing clusters facility.In this study,the massive parallel computing power from an inexpensive graphic processor unit(GPU) and a typical personal computer has been developed for improving the computing efficiency,more than 100 times.This developed three-dimensional(3-D) GLBE-SGS model,with the D3Q19 scheme for simplifying collision and streaming courses,has been successfully used to study 3-D rectangular cavity flows with Reynolds number up to 10000.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41031066,41231068,41274192,41074121&41074122)the National Basic Research Program of China(Grant No.2012CB825601)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-01-4)the Specialized Research Fund for State Key Laboratories
文摘High-performance computational models are required to make the real-time or faster than rea^-time numerical prediction of adverse space weather events and their influence on the geospace environment. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary so- lar wind. The global solar wind structures are obtained by the established GPU model with the magnetic field synoptic data as input. Meanwhile, the time-dependent solar surface boundary conditions derived from the method of characteristics and the mass flux limit are incorporated to couple the observation and the three-dimensional (3D) MHD model. The simulated evolu- tion of the global structures for two Carrington rotations 2058 and 2062 is compared with solar observations and solar wind measurements t^om spacecraft near the Earth. The MHD model is also validated by comparison with the standard potential field source surface (PFSS) model. Comparisons show that the MHD results are in good overall agreement with coronal and interplanetary structures, including the size and distribution of coronal holes, the position and shape of the streamer belts, and the transition of the solar wind speeds and magnetic field polarities.
基金supported by the Virginia Institute of Marine Science,College of William and Mary for the Study Environmentthe National Natural Science Foundation of China(Grant No.50679008)
文摘The generalized lattice Boltzmann equation(GLBE),with the addition of the standard Smagorinsky subgrid-stress(SGS) model,has been proved that it is more suitable for simulating high Reynolds number turbulent flows when compared with the lattice BGK Boltzmann equation(LBGK).However,the computing efficiency of lattice Boltzmann method(LBM) is too low to make it for practical applications,unless using a massive parallel computing clusters facility.In this study,the massive parallel computing power from an inexpensive graphic processor unit(GPU) and a typical personal computer has been developed for improving the computing efficiency,more than 100 times.This developed three-dimensional(3-D) GLBE-SGS model,with the D3Q19 scheme for simplifying collision and streaming courses,has been successfully used to study 3-D rectangular cavity flows with Reynolds number up to 10000.